123456789101112131415161718192021222324252627282930313233343536 Tengsizliklar Tengsizlik mavzusiga oid testlar jamlanmasi Test savollar soni: 36 ta Bajarish uchun ajratilgan vaqt: 60 daqiqa Barcha ma'lumotlarni to'g'ri kiriting. Agar a<-1 bo’lsa, quyida keltirilgan ifodalardan qaysi birini qiymati eng katta bo’ladi? \({a^{ - 3}}\) \({a^3}\) \({a^{ - 1}}\) \({a^{ - 5}}\) . \(\left( {{n^2} - 3} \right)\left( {{n^2} - 21} \right) < 0\) tengsizlikni qanoatlantiruvchi n ning nechta butun qiymati bor? 5 3 4 6 . Ushbu \(f\left( x \right) = \sqrt {\frac{{2{x^2} + x - 6}}{{2x - 5}}} \) funksiyaning aniqlanish sohasiga tegishli eng kichik natural sonni va funksiyaning shu nuqtadagi qiymatini toping? \(y\left( 1 \right) = 1\) \(y\left( 2 \right) = \sqrt 3 \) \(y\left( 3 \right) = \sqrt 5 \) \(y\left( 4 \right) = 4\) \(y = \sqrt {\frac{{4 - \sqrt {17} }}{{3 - 2x}}} \) funksiyaning aniqlanish sohasini toping. \(\left( {1.5;\infty } \right)\) \(\left( {0;3} \right)\) \(\left( { - \infty ;\infty } \right)\) \(\left( { - \infty ;1.5} \right)\) Tengsizliklar sistemasining butun yechimlari yig’indisini toping\(\left\{ {\begin{array}{*{20}{c}}{\frac{{\left( {x + 4} \right)\left( {x - 5} \right)}}{{{{\left( {x - 1} \right)}^2}}} \le 0}\\{x \ge - 6}\end{array}} \right.\) -1 -2 3 4 . Tenglizlikning barcha butun yechimlari yig’indisini toping. \(\left( {x - 1} \right){\left( {x + 1} \right)^2}{\left( {x - 3} \right)^3}{\left( {x - 4} \right)^4} \le 0\) 9 8 6 7 \(\left( {m - 3} \right)\left( {m - 7} \right)\)ifodaning qiymati m ning har qanday qiymatida musbat bo’lishi uchun unga qanday eng kichik butun sonni qo’shish kerak? 3 5 4 8 n ning 10 dan oshmaydigan nechta natural qiymatida \(n{x^2} + 4x > 1 - 3n\) tengsizlik x ning ixtiyoriy qiymatida o’rinli? 10 8 7 9 Tengsizlikning manfiy butun yechimlari yig’indisini toping \(\frac{{\left( {x - 5} \right)\left( {x + 3} \right)}}{{{{\left( {x + 1} \right)}^2}}} \le 0\) -6 -12 -5 -9 Ushbu \(y = \frac{{\sqrt {x + 1} + \sqrt {x - 2} }}{{\sqrt {x - 3} - \sqrt {5 - x} }}\) funksiyaning aniqlanish sohasiga tegishli barcha butun sonlarning yig’indisini toping. 12 4 8 7 Agar \( - 2 < a < - 1\;va - 3 < b < - 2.5\) bo’lsa, \(a - b\) ayirma qaysi sonlar orasida bo’ladi? (1;1.5) (-1.5;1) (-1.5;-1) (0.5;2) \(8 + \frac{{6x - 8}}{{10}} > \frac{{x - 2}}{6} + \frac{{1 - 5x}}{8} + \frac{1}{4}\) tengsizlikni qanoatlantiruvchi eng kichik butun manfiy son nechaga teng? -7 -5 -4 -6 . Tengsizlikning butun yechimlari nechta? \(\frac{{\left( { - {x^2} + x - 1} \right)\left( {{x^2} + x - 2} \right)}}{{{x^2} - 7x + 12}} \ge 0\) 1 4 2 3 . Tengsizlikning eng katta butun manfiy va eng kichik butun musbat yechimlari ko’paytmasini toping. \(\frac{{{x^4} - 3{x^3} + 2{x^2}}}{{30 - {x^2} - x}} < 0\) -30 -35 -42 -36 agar \(\frac{1}{a} < - 1\) bo’lsa quyidagi ifodalardan qaysi birining qiymati eng katta bo’ladi? \({\left( {a - 1} \right)^2}\) \({\left( {a - 1} \right)^3}\) \({a^2}\)-1 \({a^3} - 1\) Nechta tub son \(3 < \frac{{5x - 1}}{{2x - 3}} < 5\) tengsizlikning yechimi bo’la oladi? 3 2 1 0 Quyidagi tengsizliklarning qaysilari o’zaro teng kuchli? \(1)\frac{{x - 3}}{{x + 1}} \ge 0;\;2)\frac{{x - 3}}{{{x^2} + 1}} \ge 0;\;\;3)\frac{{x - 3}}{{{x^2}}} \ge 0;\;\;4)x - 3 \ge 0\) 1;4 hammasi 2;3;4 1;2;4 m ning qanday qiymatida \(\frac{{mx + 9}}{x} \ge - 10\) tengsizlikning eng katta manfiy echimi -3 ga teng bo’ladi? -6 -7 -8 -9 Tengsizlikni yeching \({x^2} - x + 1 > 0\) \(\left[ {0;\infty } \right)\) \(\emptyset \) \(\left( { - \infty ;0} \right)\) \(\left( { - \infty ;\infty } \right)\) Ushbu \(\frac{{z - 8}}{{k - 10}} = \frac{k}{z}\) tenglama ildizga ega bo’lmaydigan k ning barcha qiymatlari yig’indisini toping. 25 30 35 20 . Nechta tub son \({x^2} - 50 > 0\) tengsizlikning yechimi bo’la olmaydi? 4 2 5 3 Tengsizliklar sistemasini yeching \(\left\{ {\begin{array}{*{20}{c}}{x\left( {x + 1} \right) + 10 > {{\left( {x + 1} \right)}^2} + 3}\\{3x - 4\left( {x - 7} \right) \ge 16 - 3x}\end{array}} \right.\) (2;4] [-3;5) [-6;6) [6;\(\infty \)) Agar x va y sonlari uchun munosabat o’rinli bo’lsa, quyidagi tengsizliklardan qaysi biri doimo o’rinli bo’ladi? \(y > 25\) \(y < 16\) \(x + y < 20\) \(\frac{x}{y} < 20\) Agar \(5 \le x \le y \le z \le t \le 320\) bo’lsa, \(\frac{x}{y} + \frac{z}{t}\) ifodaning eng kichik qiymatini toping. 0.25 0.16 0.5 1.5 Agar \(f = \frac{1}{{1 - {x^2}}}\) bo’lsa, \(f\left( {f\left( x \right)} \right) \le 0\) tengsizlikning butun sonlardan iborat nechta yechimi bor? \(\emptyset \) 3 2 1 Sonlarni kamayish tartibida joylashtiring. \(a = \sqrt {101} + \sqrt {103} ;b = \sqrt {99} + \sqrt {105} ;c = 19.9\) a>c>b a>b>c c>b>a c>a>b . Funksiyaning aniqlanish sohasini toping \(y = \sqrt {\frac{{\left( {x - 2} \right)\left( {5 - x} \right)}}{{\left( {x - 3} \right)\left( {x - 4} \right)}}} \) \(\left( {2;3} \right) \cup \left( {4;5} \right)\) \(\left( {2;3} \right] \cup \left[ {4;5} \right)\) \(\left[ {2;3} \right) \cup \left( {4;5} \right]\) \(\left( { - \infty ;2} \right] \cup \left( {3;4} \right) \cup \left[ {5;\infty } \right)\) Ushbu \(1.\;{a^2} > 0;2.\;{a^2} - 10\left\langle {0;3.{{\left( {a - 5} \right)}^2} \ge 0;4.\;\frac{1}{{{a^2}}} + {a^2}} \right\rangle 2\) tengsizliklarning qaysilari a ning barcha qiymatlarida o’rinli? 2 1,3 va 4 3 1 \(\left\{ {\begin{array}{*{20}{c}}{\left( {x + 2} \right)\left( {2 - x} \right) < \left( {x + 3} \right)\left( {4 - x} \right)}\\{\frac{{3 + x}}{4} + \frac{{1 - 2x}}{6} \ge 1}\end{array}} \right.\) tengsizliklar sistemasining butun sonlardan iborat yechimlari nechta? 8 7 6 9 \(y = \sqrt[4]{{\frac{{{x^2} - 6x - 16}}{{{x^2} - 12x + 11}}}} + \frac{2}{{{x^2} - 49}}\) funksiyaning aniqlanish sohasini toping. \(\left( { - \infty ; - 2} \right] \cup \left( {1;8} \right] \cup \left( {11;\infty } \right)\) \(x \ne \pm 7\) \(\left( { - \infty ; - 7} \right) \cup \left( { - 7; - 2} \right] \cup \left( {1;7} \right) \cup \left( {7;8} \right] \cup \left( {11;\infty } \right)\) \(\left[ { - 2;8} \right] \cup \left( {11;\infty } \right)\) . \(y = \frac{{\sqrt {{x^2} - x - 30} }}{{\sqrt {\left| {{x^2} - x - 42} \right|} }}\) funksiyaning aniqlanish sohasini toping. \(\left( { - 6;7} \right) \cup \left( {7;\infty } \right)\) \(\left( { - \infty ; - 6} \right) \cup \left( { - 6; - 5} \right] \cup \left[ {6;7} \right) \cup \left( {7;\infty } \right)\) \(\left( { - \infty ; - 6} \right) \cup \left( { - 6;7} \right) \cup \left( {7;\infty } \right)\) \(\left( { - \infty ; - 5} \right] \cup \left[ {6;\infty } \right)\) Tengsizlikni yeching \(9{x^2} - 6x + 1 > 0\) \(\left( {\frac{1}{3};\infty } \right)\) \(\left( { - \infty ;\frac{1}{3}} \right)\) \(\left( { - \infty ;\frac{1}{3}} \right) \cup \left( {\frac{1}{3};\infty } \right)\) \(\left( { - \frac{1}{3};\infty } \right)\) \({x^2} + px + {q^2} = 0\;\left( {q \ne 0} \right)\) tenglama \(\frac{p}{q}\) ning qanday qiymatlarida haqiqiy ildizlarga ega emas? [-2;2] [0;2] (0;2] (-2;2) Ushbu \(\left( {{x^2} - x - 1} \right)\left( {{x^2} - x - 7} \right) \le - 5\) tengsizlikning eng katta butun va eng kichik butun yechimlari ayirmasini toping. 4 5 2 3 Tengsizliklar sistemasining eng katta butun yechimini ko’rsating.\(\left\{ {\begin{array}{*{20}{c}}{\frac{{x + 5}}{4} - 2x \ge 0}\\{x - \frac{{2x - 8}}{5} \ge 1 - 2x}\end{array}} \right.\) 1 0 -1 2 \(x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) \le 24\) tengsizlikning yechimlari orasida nechta butun son bor? 2 5 4 3 Facebook Twitter VKontakte 0% Перезапустить тест