123456789101112131415161718192021222324252627282930 Matematika 1-variant Matematika fanidan abiturentlar uchun mo'ljallangan testlar jamlanmasi (1-variant) Test savollar soni: 30 ta Bajarish uchun vaqt: 60 daqiqa Barchaga omad yor bo'lsin! Barcha ma'lumotlarni to'g'ri kiriting. Bir bola bilyard sharchalarini 9 tadan to’plarga ajratganda 5 ta, 12 tadan ajratganda 8 ta, 14 tadan ajratganda 10 ta sharcha yetmayapti. Bunga ko’ra bolada kamida nechta sharcha mavjud? 1003 256 509 504 \(\arccos \frac{{36}}{{85}} - \arccos \frac{{15}}{{17}} = ?\) \(\frac{\pi }{2} + \arcsin \frac{5}{4}\) \(\frac{\pi }{2} - \arcsin \frac{4}{5}\) \(\frac{{2\pi }}{2} - \arcsin \frac{4}{5}\) \(\frac{\pi }{{12}} - \arcsin \frac{4}{5}\) m ning qanday qiymatlarida \(\left\{ {\begin{array}{*{20}{c}}{2x - y = 3m - 4}\\{x - y = m - 1}\end{array}} \right.\)tenglamalar sistemasining yechimi koordinata tekisligining IV choragiga tegishli bo’ladi. \(\left( {2;\infty } \right)\) \(\left( {\frac{3}{2};2} \right)\) \(\emptyset \) \(\left( { - \infty ;\frac{5}{3}} \right)\) ) Uchburchak ikkita tomonining uzunliklari 6 sm va 3 sm ekanligi ma’lum. Agar berilgan tomonlarga tushirilgan balandliklar yig’indisining yarmi uchinchi balandlikka teng bo’lsa, uchburchakning uchinchi tomoni necha sm. 4 1 7 6 \(\left| {\frac{1}{{1,5 - \frac{x}{2}}}} \right| > \frac{4}{{15}}\)tengsizlikning barcha butun sonlardagi yechimlari yig’indisini toping. 42 43 24 32 \(\frac{{({{8,7}^2} - {{11,3}^2})({{13,3}^2} - {{12,3}^2})}}{{({{4,2}^2} - {{5,8}^2})({{2,3}^2} - {{0,3}^2})}}\) ni hisoblang. 32 16 3,2 0,32 ) \(\sin {18^0}\sin {54^0} = ?\) 0,5 0,25 0,35 0,75 a bilan b ning o’rta arifmetigi va o’rta geometrigi 4 bo’lsa, a-1 bilan b-1 ning o’rta geometrigi topilsin. 2 4 5 3 ) 40 kishilik sinfda 21 kishi sinfdan sinfga ko’chdi. Qolganlari ona tili va matematikadan kuzga qoldi. Ona tilidan kuzga qolganlar soni matematikadan qolganlarning 2 baravariga teng. Ham ona tilidan, ham matematikadan qolganlar soni 8 kishi bo’lsa, faqat matematikadan qolganlar soni nechta? 3 9 1 8 \(a,b \in N\) va \(b = \frac{{a + 3}}{4} + \frac{{a + 3}}{5}\) bo’lsa, a eng kamida nechaga teng? 0 2 17 3 \(\left\{ {\begin{array}{*{20}{c}}{3 - 4x > 5}\\{2 + 3(x - 1) \le 4x + 3}\end{array}} \right.\)tengsizliklar sistemasi nechta butun yechimga ega? 1 6 4 3 P(x) ning (x-3)2 ga bo’linmasidan qolgan qoldiq (2x-3) bo’lsa, (x-3) ga bo’linmasidan qolgan qoldiqni toping. 1 3 4 2 ABC tomoni 16 sm bo’lgan teng tomonli uchburchak. \(\left[ {BH} \right] \bot \left[ {AC} \right],\left[ {HK} \right] \bot \left[ {BC} \right],\) \(\left[ {KT} \right] \bot \left[ {BH} \right]\) bo’lsa, \({S_{\Delta THK}}\)necha sm2? \(8\sqrt 3 \) \(4\sqrt 3 \) \(16\sqrt 3 \) \(6\sqrt 3 \) \(y = \frac{{{x^2} + ax + b}}{{{x^2}}}\) egri chiziq A(-3;0) nuqtada x o’qiga urinsa, a+b=? 6 -12 15 -6 \({\log _2}25\)ning butun qismini toping. 2 4 3 5 \({\left( {3\frac{3}{8}} \right)^{ - \frac{2}{3}}} + {27^{\frac{2}{3}}} \cdot {9^{0,5}} \cdot {3^{ - 2}} + {\left( {{{\left( {\frac{7}{9}} \right)}^3}} \right)^0} - {\left( { - \frac{1}{2}} \right)^{ - 2}}\) ni hisoblang. \(\frac{8}{9}\) 1 \(\frac{4}{9}\) 0 \(\frac{{\cos 2x}}{{\frac{{\sqrt 2 }}{2} + \sin x}} = 0\) tenglamaning \(\left[ {0;6\pi } \right]\) kesmada nechta ildizi bor? 4 2 8 6 \({\log _{\sqrt 5 }}\sqrt {5 \cdot \sqrt {5 \cdot \sqrt {5 \cdot ...} } } = ?\) 1 5 1/2 2 \(\frac{{t - 6}}{{m - 10}} = \frac{m}{t}\) tenglama m ning nechta natural qiymatida ildizga ega emas? 5 28 7 8 ) Teng yonli to’g’ri burchakli uchburchakka ichki chizilgan aylana radiusining uchburchak gipotenuzasiga o’tkazilgan balandlikka bo’lgan nisbatini toping. \(\sqrt 2 - 1\) \(1 - \sqrt 2 \) \(\sqrt 5 - 2\) \(\sqrt 2 + 1\) ) \(\sqrt {a + \sqrt {a + \sqrt {a + ...} } } = 4\) tenglikdan a ni toping. 4 32 6 12 Parallelogrammning perimetri 40 sm, uning balandliklari 2:3 kabi nisbatda bo’lsa, parallelogrammning katta tomonini toping. 25 12 18 15 Arifmetik progressiya uchinchi va to’qqizinchi hadlarining yig’indisi 10 ga teng. Shu progressiyaning dastlabki 11 ta hadlari yig’indisini toping. 55 44 22 60 y=9 – 0,5x funksiyaning qiymatlar sohasini toping. A) \(\left( {9;\infty } \right)\) \(\left( { - \infty ;\infty } \right)\) \(\left( {0;9} \right)\) \(\left( { - \infty ;9} \right)\) \(\left( {0;\infty } \right)\) \(\begin{array}{l}\sin {10^0}\sin {20^0}\sin {30^0}\sin {40^0}\sin {50^0} \cdot \\ \cdot \sin {60^0}\sin {70^0}\sin {80^0} = ?.\end{array}\) \(\frac{1}{{256}}\) \(\frac{3}{{265}}\) \(\frac{1}{{265}}\) \(\frac{3}{{256}}\) ) Uchburchakning 6 ga teng balandligi uning asosi uzunligini 7:18 kabi nisbatda bo’ladi. Shu balandlikka parallel va uchburchakning yuzini teng ikkiga bo’ladigan to’g’ri chiziq kesmasining uzunligini toping. 3,5 4 5 5,5 \(\frac{{{3^9} \cdot {2^{19}} + 15 \cdot {4^9} \cdot {9^4}}}{{{6^9} \cdot {2^{10}} + {{12}^{10}}}} \cdot {\left( {1\frac{1}{2}} \right)^{ - 1}}\) ni hisoblang. \(\frac{2}{3}\) \(\frac{1}{2}\) \(\frac{1}{3}\) 1 \(\sqrt[n]{{16 \cdot \sqrt[n]{{16 \cdot \sqrt[n]{{16...}}}}}} = m\) bo’lsin, m va n musbat butun sonlar bo’lsa, m-n ni toping. -3 va 1 -3, 1 va 15 1 va 14 -3, 1 va 14 To’gri burchakli ABC uchburchakda C burchak to’g’ri burchak bo’lib, AN bissektrisa va AB gipotenuzada D nuqta olingan bo’lib, AD=2 va \({S_{\Delta ANC}}:{S_{\Delta AND}} = 3\) bo’lsa, AC=? 6 4 5 3 Quyida keltirilgan tengliklardan qaysilari ayniyat emas? 1) \((x + a) \cdot (x - b) = {x^2} - (a - b)x - ab;\) 2) \((x - c) \cdot (x - d) = {x^2} + (c - d)x + cd;\) 3) \((x - c) \cdot (x + d) = {x^2} - (c - d)x - cd;\) 4) \(\begin{array}{l}6ab + (2{a^3} + {b^3} - (3a{b^2} - ({a^3} + 2a{b^2} - \\ - {b^3}))) = 3{a^3} - a{b^2} + 6ab;\end{array}\) 5) \(\begin{array}{l}5{a^2} - 3{b^2} - (({a^2} - 2ab - {b^2}) - (5{a^2} - 2ab - \\ - {b^2})) = 9{a^2} + 4ab - 3{b^2}.\end{array}\) 1;2;4 2;3;5 1;2;5 1;3;4 Facebook Twitter VKontakte 0% Перезапустить тест