Report a question What's wrong with this question? You cannot submit an empty report. Please add some details. 123456789101112131415161718192021222324252627282930 Matematika fanidan test savollari 1-variant Oliy ta'lim uchun test sinovlariga tayyorlanayotgan abiturentlar uchun test savollari Matematika fanidan 30 ta test Bajarish uchun 90 minut Barcha ma'lumotlarni to'g'ri kiriting. \(f\left( {\frac{{3x - 1}}{{x + 2}}} \right) = \frac{{x + 1}}{{x - 1}}\) bo‘lsa, \(f\left( x \right)\) ni toping. \(\frac{{3x - 1}}{{x + 2}}\) \(\frac{{x + 1}}{{x - 1}}\) \(\frac{{x + 4}}{{3x - 2}}\) \(\frac{{2x + 1}}{{3 - x}}\) Sardor \(420\) \({\rm{m}}\) masofani \(7\) \({\rm{daqiqa}}\)da bosib o‘tadi. Sardorning tezligini \(\left( {{\rm{m}}/{\rm{min}}} \right)\) toping. \(1020\) \(60\) \(490\) \(400\) \({\left( {2{x^2} - \frac{1}{{{x^2}}}} \right)^7} = \ldots + p \cdot {x^6} + \ldots \) bo‘lsa, \(p\) ning qiymatini toping. \(720\) \(560\) \(480\) \(672\) Quyidagi rasmda qirrasining uzunligi \(6\;{\rm{sm}}\) bo‘lgan muntazam tetraedr tasvirlangan:Agar \(BD = FE = 4\;{\rm{sm}};{\rm{\;\;}}DC = AF = 2\;{\rm{sm}}\) va \(O\) nuqta \(AC\) qirrada ekanligi ma’lum bo‘lsa, \(DO + OF\) yig‘indining eng kichik qiymatini \(\left( {{\rm{sm}}} \right)\) toping. \(12\) \(6\) \(2\sqrt 7 \) \(\sqrt 7 \) Muntazam oltiburchakka tashqi chizilgan aylananing radiusi \(4\sqrt 3 \) \({\rm{sm}}\;\)ga teng bo‘lsa, uning kichik diagonalini \(\left( {{\rm{sm}}} \right)\) toping. \(6\sqrt 6 \) \(3\sqrt 6 \) \(12\) \(6\) Quyidagi chizmada berilgan ma’lumotlardan foydalanib, \(x\;\)ni toping. \(6\sqrt 5 \) \(16\) \(12\) \(8\sqrt 5 \) \(n + 7\) soni juft son bo‘lsa, quyidagilardan qaysi biri toq son bo‘ladi? \(2n - 8\) \({2^n} - {n^2}\) \(3n + 5\) \({n^2} + n\) \(n - \;\)hadi \({a_n}\) bo‘lgan arifmetik progressiya uchun \({a_n} = 2 + {a_{n - 1}}\) tenglik o‘rinli bo‘lib, dastlabki o‘nta hadining yig‘indisi \(115\) ga teng bo‘lsa, arifmetik progressiyaning birinchi hadini toping. \(2\) \(\frac{5}{2}\) \(3\) \(\frac{3}{2}\) Soddalashtiring: \(\frac{{{{\left( {a + 1} \right)}^3} + 1}}{{{a^3} - 1}}\) \(\frac{{a + 1}}{{a - 1}}\) \(\frac{{a - 1}}{{a + 1}}\) \(\frac{{a + 2}}{{a - 1}}\) \(\frac{{a - 2}}{{a + 1}}\) \(f\left( x \right) = y\) va \({x^2} - 2x = {e^{x - y}}\) bo‘lsa, \(f'\left( 4 \right)\) ning qiymatini toping. \(\frac{1}{8}\) \(\frac{1}{2}\) \(\frac{1}{4}\) \(1\) \(P\left( x \right) = {\left( {x - 1} \right)^a} \cdot {\left( {x + 2} \right)^b}\) va \(P\left( 2 \right) \cdot P\left( 1 \right) = 64\) bo‘lsa, \(a + b\) ning qiymatini toping. aniqlab bo‘lmaydi \(0\) \(3\) \(6\) \(\cos 3x - \sqrt 3 \sin 3x < 0\) tengsizlikni yeching. \(\left( { - \frac{{4\pi }}{9} + \frac{{2\pi k}}{3};\; - \frac{\pi }{9} + \frac{{2\pi k}}{3}} \right),\;\;k \in Z\) \(\left( {\frac{\pi }{{18}} + \frac{{2\pi k}}{3};\;\frac{{7\pi }}{{18}} + \frac{{2\pi k}}{3}} \right),\;\;k \in Z\) \(\left( { - \frac{\pi }{9} + \frac{{2\pi k}}{3};\;\frac{{2\pi }}{9} + \frac{{2\pi k}}{3}} \right),\;\;k \in Z\) \(\left( { - \frac{{5\pi }}{{18}} + \frac{{2\pi k}}{3};\;\frac{\pi }{{18}} + \frac{{2\pi k}}{3}} \right),\;\;k \in Z\) \(\;\frac{{10!}}{{7!}} \cdot \left( {\frac{{8!}}{{10!}} + \frac{{3!}}{{5!}}} \right)\) ni hisoblang. \(44\) \(36\) \(52\) \(28\) \(f\left( x \right) = f\left( 5 \right) \cdot x - 20\) bo‘lsa, \(f\left( 4 \right)\) ning qiymatini toping. \(5\) \(0\) \(4\) \( - 2\) \({\left( {\sqrt {6 + \sqrt {35} } } \right)^x} + {\left( {\sqrt {6 - \sqrt {35} } } \right)^x} = 12\) tenglamaning butun ildizlari ko‘paytmasini toping. \( - 2\) \( - 2\) \( - 4\) \(4\) \(\;\left( {e - \pi } \right)x \ge 7\left( {\pi - e} \right)\) tengsizlikni yeching. \(x \ge 7\) \(x \le - 7\) \(x \le 7\) \(x \ge - 7\) \({9^{{x^2} - 1}} + {3^{{x^2}}} - 4 = 0\) tenglamaning butun ildizlari yig‘indisini toping. butun ildizi yo‘q \( - 1\) \(0\) \(1\) Quyidagi rasmda \(y = f\left( x \right)\) funksiya grafigi tasvirlangan: Rasmda berilgan ma’lumotlardan foydalanib, \(\left( {x - 3} \right) \cdot f\left( x \right) > 0\) tengsizlikni qanoatlantiradigan butun sonlar yig‘indisini toping. \(0\) \( - 1\) \( - 3\) \( - 4\) \(4{x^2} + \frac{1}{{{x^2} - 4}} = 16 - \frac{1}{{4 - {x^2}}}\) tenglamani yeching. \(2\) \( - 2\) \(0\) \(\emptyset \) Quyidagi rasmda ko‘rsatilgan krandan konus ichiga doimiy bir xil suv oqib tushadi. Agar kran konusni bo‘yalgan qismini \(4\) minutda to‘ldirsa, butun konusni necha minutda to‘ldiradi? \(126\) \(118\) \(104\) \(108\) \(\frac{{1 + 3 + 5 + \ldots + 43}}{{2 + 4 + 6 + \ldots + 42}}\) ni hisoblang. \(\frac{{22}}{{17}}\) \(\frac{{43}}{{42}}\) \(\frac{{41}}{{43}}\) \(\frac{{22}}{{21}}\) \(\;\left( {x - 5} \right) \cdot \left( {\frac{1}{5}x + 4} \right) = 0\) bo‘lsa, \(\frac{1}{5}x + 4\) qanday qiymatlar qabul qiladi? faqat \(5\) \(0\) yoki \(8\) \(0\) yoki \(5\) faqat \(0\) \(f\left( x \right) = \left| {\left| {x - 2} \right| - 2} \right|\) funksiya grafigini chizing. Quyidagi rasmda tasvirlangan \(ABC\) uchburchakning tomonlarida \(9\) ta nuqta olingan:Uchlari ko‘rsatilgan nuqtalarda bo‘lgan nechta uchburchak bor? \(75\) \(72\) \(76\) \(84\) Aniq integralni hisoblang: \(\mathop \smallint \nolimits_0^3 \frac{x}{{\sqrt {1 + {x^2}} }}dx + \mathop \smallint \nolimits_0^3 \frac{1}{3}dx\) \(\sqrt {10} - 1\) \(\sqrt 7 - 1\) \(\sqrt 7 \) \(\sqrt {10} \) \({\left( {{4^{\frac{{{{\log }_4}7}}{{{{\log }_7}4}}}} - {7^{{{\log }_4}7}} + {3^{{{\log }_9}16}}} \right)^{\frac{1}{2}}}\) ni hisoblang. \(4\) \(0\) \(2\) \(7\) Ishlab chiqarish samaradorligi birinchi yili \(15\% \) ga, ikkinchi yili \(16\% \) ga ortdi. Shu ikki yil ichida samaradorlik necha \(\% \) ga ortgan? \(34\) \(34,3\) \(31\) \(33,4\) \(32;\;\;18\) va \(24\) sonlarining o‘rta geometrigini toping. \(18\) \(24\) \(16\) \(32\) Teng yonli \(ABCD\) trapetsiyaning ichida \(P\) nuqta shunday olinganki, \(PA = 2;\;\;PB = 3;\;\;PC = 4\) va \(PD = 5\) ga teng. Agar \(AD\) katta asos bo’lsa, \(\frac{{BC}}{{AD}}\) ning qiymatini toping. \(\frac{1}{5}\) \(\frac{1}{4}\) \(\frac{1}{2}\) \(\frac{1}{3}\) \(\frac{{{{\left( {2\left| x \right| - 3} \right)}^2} - \left| x \right| - 6}}{{4x + 1}} = 0\) tenglamaning haqiqiy ildizlari yig‘indisini toping. \( - \frac{1}{4}\) \(3\) \(0\) \(\frac{1}{4}\) Facebook Twitter VKontakte 0% Перезапустить тест