Report a question What's wrong with this question? You cannot submit an empty report. Please add some details. 123456789101112131415161718192021222324252627282930 Matematika fanidan test savollari 1-variant Oliy ta'lim uchun test sinovlariga tayyorlanayotgan abiturentlar uchun test savollari Matematika fanidan 30 ta test Bajarish uchun 90 minut Barcha ma'lumotlarni to'g'ri kiriting. \(n - \;\)hadi \({a_n}\) bo‘lgan arifmetik progressiya uchun \({a_n} = 2 + {a_{n - 1}}\) tenglik o‘rinli bo‘lib, dastlabki o‘nta hadining yig‘indisi \(115\) ga teng bo‘lsa, arifmetik progressiyaning birinchi hadini toping. \(3\) \(2\) \(\frac{3}{2}\) \(\frac{5}{2}\) Teng yonli \(ABCD\) trapetsiyaning ichida \(P\) nuqta shunday olinganki, \(PA = 2;\;\;PB = 3;\;\;PC = 4\) va \(PD = 5\) ga teng. Agar \(AD\) katta asos bo’lsa, \(\frac{{BC}}{{AD}}\) ning qiymatini toping. \(\frac{1}{2}\) \(\frac{1}{4}\) \(\frac{1}{3}\) \(\frac{1}{5}\) \({\left( {{4^{\frac{{{{\log }_4}7}}{{{{\log }_7}4}}}} - {7^{{{\log }_4}7}} + {3^{{{\log }_9}16}}} \right)^{\frac{1}{2}}}\) ni hisoblang. \(4\) \(0\) \(7\) \(2\) Muntazam oltiburchakka tashqi chizilgan aylananing radiusi \(4\sqrt 3 \) \({\rm{sm}}\;\)ga teng bo‘lsa, uning kichik diagonalini \(\left( {{\rm{sm}}} \right)\) toping. \(3\sqrt 6 \) \(6\sqrt 6 \) \(12\) \(6\) \(n + 7\) soni juft son bo‘lsa, quyidagilardan qaysi biri toq son bo‘ladi? \({n^2} + n\) \(2n - 8\) \({2^n} - {n^2}\) \(3n + 5\) \(P\left( x \right) = {\left( {x - 1} \right)^a} \cdot {\left( {x + 2} \right)^b}\) va \(P\left( 2 \right) \cdot P\left( 1 \right) = 64\) bo‘lsa, \(a + b\) ning qiymatini toping. \(3\) \(0\) aniqlab bo‘lmaydi \(6\) \({9^{{x^2} - 1}} + {3^{{x^2}}} - 4 = 0\) tenglamaning butun ildizlari yig‘indisini toping. \(1\) butun ildizi yo‘q \(0\) \( - 1\) Aniq integralni hisoblang: \(\mathop \smallint \nolimits_0^3 \frac{x}{{\sqrt {1 + {x^2}} }}dx + \mathop \smallint \nolimits_0^3 \frac{1}{3}dx\) \(\sqrt 7 - 1\) \(\sqrt {10} \) \(\sqrt 7 \) \(\sqrt {10} - 1\) \({\left( {2{x^2} - \frac{1}{{{x^2}}}} \right)^7} = \ldots + p \cdot {x^6} + \ldots \) bo‘lsa, \(p\) ning qiymatini toping. \(560\) \(672\) \(720\) \(480\) \(\cos 3x - \sqrt 3 \sin 3x < 0\) tengsizlikni yeching. \(\left( {\frac{\pi }{{18}} + \frac{{2\pi k}}{3};\;\frac{{7\pi }}{{18}} + \frac{{2\pi k}}{3}} \right),\;\;k \in Z\) \(\left( { - \frac{\pi }{9} + \frac{{2\pi k}}{3};\;\frac{{2\pi }}{9} + \frac{{2\pi k}}{3}} \right),\;\;k \in Z\) \(\left( { - \frac{{5\pi }}{{18}} + \frac{{2\pi k}}{3};\;\frac{\pi }{{18}} + \frac{{2\pi k}}{3}} \right),\;\;k \in Z\) \(\left( { - \frac{{4\pi }}{9} + \frac{{2\pi k}}{3};\; - \frac{\pi }{9} + \frac{{2\pi k}}{3}} \right),\;\;k \in Z\) \(\frac{{1 + 3 + 5 + \ldots + 43}}{{2 + 4 + 6 + \ldots + 42}}\) ni hisoblang. \(\frac{{43}}{{42}}\) \(\frac{{41}}{{43}}\) \(\frac{{22}}{{21}}\) \(\frac{{22}}{{17}}\) \(f\left( x \right) = y\) va \({x^2} - 2x = {e^{x - y}}\) bo‘lsa, \(f'\left( 4 \right)\) ning qiymatini toping. \(\frac{1}{2}\) \(\frac{1}{4}\) \(\frac{1}{8}\) \(1\) Quyidagi rasmda qirrasining uzunligi \(6\;{\rm{sm}}\) bo‘lgan muntazam tetraedr tasvirlangan:Agar \(BD = FE = 4\;{\rm{sm}};{\rm{\;\;}}DC = AF = 2\;{\rm{sm}}\) va \(O\) nuqta \(AC\) qirrada ekanligi ma’lum bo‘lsa, \(DO + OF\) yig‘indining eng kichik qiymatini \(\left( {{\rm{sm}}} \right)\) toping. \(12\) \(2\sqrt 7 \) \(\sqrt 7 \) \(6\) Quyidagi rasmda tasvirlangan \(ABC\) uchburchakning tomonlarida \(9\) ta nuqta olingan:Uchlari ko‘rsatilgan nuqtalarda bo‘lgan nechta uchburchak bor? \(75\) \(76\) \(84\) \(72\) \(\frac{{{{\left( {2\left| x \right| - 3} \right)}^2} - \left| x \right| - 6}}{{4x + 1}} = 0\) tenglamaning haqiqiy ildizlari yig‘indisini toping. \( - \frac{1}{4}\) \(\frac{1}{4}\) \(0\) \(3\) \(\;\left( {e - \pi } \right)x \ge 7\left( {\pi - e} \right)\) tengsizlikni yeching. \(x \ge 7\) \(x \ge - 7\) \(x \le 7\) \(x \le - 7\) \({\left( {\sqrt {6 + \sqrt {35} } } \right)^x} + {\left( {\sqrt {6 - \sqrt {35} } } \right)^x} = 12\) tenglamaning butun ildizlari ko‘paytmasini toping. \(4\) \( - 2\) \( - 2\) \( - 4\) \(\;\frac{{10!}}{{7!}} \cdot \left( {\frac{{8!}}{{10!}} + \frac{{3!}}{{5!}}} \right)\) ni hisoblang. \(44\) \(36\) \(52\) \(28\) \(\;\left( {x - 5} \right) \cdot \left( {\frac{1}{5}x + 4} \right) = 0\) bo‘lsa, \(\frac{1}{5}x + 4\) qanday qiymatlar qabul qiladi? faqat \(0\) \(0\) yoki \(8\) \(0\) yoki \(5\) faqat \(5\) \(f\left( {\frac{{3x - 1}}{{x + 2}}} \right) = \frac{{x + 1}}{{x - 1}}\) bo‘lsa, \(f\left( x \right)\) ni toping. \(\frac{{x + 1}}{{x - 1}}\) \(\frac{{3x - 1}}{{x + 2}}\) \(\frac{{x + 4}}{{3x - 2}}\) \(\frac{{2x + 1}}{{3 - x}}\) \(4{x^2} + \frac{1}{{{x^2} - 4}} = 16 - \frac{1}{{4 - {x^2}}}\) tenglamani yeching. \( - 2\) \(2\) \(\emptyset \) \(0\) Quyidagi rasmda ko‘rsatilgan krandan konus ichiga doimiy bir xil suv oqib tushadi. Agar kran konusni bo‘yalgan qismini \(4\) minutda to‘ldirsa, butun konusni necha minutda to‘ldiradi? \(118\) \(126\) \(108\) \(104\) Quyidagi rasmda \(y = f\left( x \right)\) funksiya grafigi tasvirlangan: Rasmda berilgan ma’lumotlardan foydalanib, \(\left( {x - 3} \right) \cdot f\left( x \right) > 0\) tengsizlikni qanoatlantiradigan butun sonlar yig‘indisini toping. \( - 4\) \(0\) \( - 1\) \( - 3\) Soddalashtiring: \(\frac{{{{\left( {a + 1} \right)}^3} + 1}}{{{a^3} - 1}}\) \(\frac{{a + 2}}{{a - 1}}\) \(\frac{{a - 1}}{{a + 1}}\) \(\frac{{a - 2}}{{a + 1}}\) \(\frac{{a + 1}}{{a - 1}}\) \(f\left( x \right) = f\left( 5 \right) \cdot x - 20\) bo‘lsa, \(f\left( 4 \right)\) ning qiymatini toping. \(4\) \(0\) \( - 2\) \(5\) Ishlab chiqarish samaradorligi birinchi yili \(15\% \) ga, ikkinchi yili \(16\% \) ga ortdi. Shu ikki yil ichida samaradorlik necha \(\% \) ga ortgan? \(34\) \(31\) \(33,4\) \(34,3\) Quyidagi chizmada berilgan ma’lumotlardan foydalanib, \(x\;\)ni toping. \(16\) \(12\) \(6\sqrt 5 \) \(8\sqrt 5 \) \(32;\;\;18\) va \(24\) sonlarining o‘rta geometrigini toping. \(24\) \(16\) \(32\) \(18\) Sardor \(420\) \({\rm{m}}\) masofani \(7\) \({\rm{daqiqa}}\)da bosib o‘tadi. Sardorning tezligini \(\left( {{\rm{m}}/{\rm{min}}} \right)\) toping. \(490\) \(1020\) \(60\) \(400\) \(f\left( x \right) = \left| {\left| {x - 2} \right| - 2} \right|\) funksiya grafigini chizing. Facebook Twitter VKontakte 0% Перезапустить тест