Report a question What's wrong with this question? You cannot submit an empty report. Please add some details. 123456789101112131415161718192021222324252627282930 Abiturentlar uchun matematika fanidan test savollari DTM test 2-variant Matematika fanidan online test Test savollari soni: 30 ta Barcha ma'lumotlarni to'g'ri kiriting. \(2{x^2} + 3x - 7 = 0\) tenglamaning ildizlari \({x_1}\) va \({x_2}\) bo‘lsa, \(2x_1^2 - 3{x_2} + \sqrt {2x_1^2 + 3{x_1} + 18} \) ni qiymatini toping. \(\frac{{15}}{2}\) \(\frac{{11}}{2}\) \(\frac{{21}}{2}\) \(\frac{{33}}{2}\) Qirrasining uzunligi \(a\) ga teng bo‘lgan muntazam tetraedrning hajmini toping. \(\frac{{{a^3}\sqrt 3 }}{{12}}\) \(\frac{{{a^3}\sqrt 2 }}{{12}}\) \(\frac{{{a^3}\sqrt 3 }}{{24}}\) \(\frac{{{a^3}\sqrt 2 }}{{24}}\) Quyidagi rasmda \(y = f\left( x \right)\) funksiya grafigi tasvirlangan:Rasmda berilgan ma’lumotlardan foydalanib, \(f\left( 0 \right) + h\left( 2 \right) - f\left( 3 \right) + h\left( 0 \right) = f\left( x \right)\) tenglamaning butun ildizlari yig‘indisini toping. Bu yerda \(f\left( x \right)\) va \(h\left( x \right)\) funksiyalar \(y = x\) to‘g‘ri chiziqqa nisbatan simmetrik. \(0\) \(3\) \(2\) \(6\) Gugurt cho‘plari yordamida kvadrat va muntazam oltiburchaklar joylashtirilib, quyidagi rasm hosil qilinyapti. Rasmning ichki qismida muntazam ko‘pburchak hosil bo‘ladi: Bunga ko‘ra, yuqoridagi rasmni hosil qilish uchun nechta gugurt cho‘plari ishlatilganini aniqlang. \(48\) \(60\) \(36\) \(42\) \(y = {x^2} - 6x - 7\) funksiyaning grafigi koordinata o‘qlarini \(A;\;\;B\) va \(C\) nuqtalarda kesib o‘tsa, \(ABC\) uchburchakning yuzini toping. \(28\) \(42\) \(56\) \(21\) \(\;A = \left\{ {1,\;3,\;5,\;7,\;9} \right\}\) va \(B = \left\{ {2,\;4,\;6,\;8,\;10} \right\}\) to‘plamlarning har biridan bittadan son tanlansa, bu sonlarning ko‘paytmasi \(25\) dan katta va \(45\) dan kichik bo‘lish ehtimoli necha foizga teng? \(15\) \(24\) \(25\) \(20\) \(EKUB\left( {a\;;\;a + 1} \right) = 2a - 15\) bo‘lsa, \(EKUB\left( {a + 2\;;a - 3} \right)\) ning qiymatini toping. \(2\) \(3\) \(5\;\) \(4\) Bo‘sh idishning og‘irligi \(4\) kg. Idish yarmigacha suv bilan to‘ldirilganda uning og‘irligi \(6\) kg bo‘ladi. Beshta shunday idish suv bilan to‘ldirilganda ularning umumiy og‘irligi necha kg bo‘ladi? \(45\) \(30\) \(40\) \(50\) \(f\left( x \right) = \cos 8x\cos 4x - \sin 8x\sin 4x\) bo‘lsa, \(f\left( {\frac{\pi }{{36}}} \right)\) ning qiymatini toping. \(\cos \frac{\pi }{9}\) \(\frac{1}{2}\) \(\sin \frac{\pi }{9}\) \(\frac{{\sqrt 3 }}{2}\) \(4079 \ge \overline {40x9} \) tengsizlik to‘g‘ri bo‘ladigan \(x\) raqamining barcha qiymatlari yig‘indisini toping. \(36\) \(17\) \(28\) \(24\) \(\;1;\;\;2;\;\;2;\;\;3;\;\;3;\;\;3;\;\;4;\;\;4;\;\;4;\;\;4;\; \ldots \) ketma-ketlikning dastlabki \(100\) ta hadini yig‘indisi topilsin. \(945\) \(915\) \(895\) \(875\) \(f\left( x \right) = \sqrt {3x - \sqrt {2x} } \) bo‘lsa, \(f'\left( 2 \right)\) ning qiymatini toping. \(\frac{5}{2}\) \(5\) \(\frac{5}{8}\) \(\frac{5}{4}\) \(4\left( {2x - 3} \right) + 3\left( {2x - 5} \right) = 1\) tenglamaning ildizi \({x_0}\) bo‘lsa, \(2{x_0} + 3\) ning qiymatini toping. \(9\) \(8\) \(2\) \(7\) Telefon kompaniyasi \(t\) daqiqalik suhbat uchun \(y\) so‘m oladi va bu \(y = a + b \cdot \lg t\) qonuniyat asosida hisoblanadi. Agar \(1\) daqiqalik suhbat uchun \(0,5\) so‘m, \(10\) daqiqalik suhbat uchun \(3,4\) so‘m olinsa, \(b\) ning qiymatini toping. \(3\) \(2,9\) \(3,1\) \(2,7\) \({\left( {4{x^2} - \frac{1}{{\sqrt 2 }}y} \right)^9}\)ifodani ochib chiqqanimizda bitta hadi \(A \cdot {x^n}{y^n}\) bo‘lsa, \(A\) ni toping. \( - 8C_9^6\) \(4C_9^6\) \( - 4C_9^6\) \(8C_9^6\) Arifmetik progressiya hadlari uchun \({a_6} - {a_2} = 3 + {a_7} - {a_5}\) tenglik o‘rinli bo‘lsa, \({a_{20}} - {a_{10}}\) ning qiymatini toping. \( - 20\) \(15\) \(20\) \( - 15\) \(4\) ta tovuq, \(2\) ta o‘rdak va \(3\) ta g‘oz bor. Bir nechta parranda tanlanmoqda, bunda tanlangan parrandalar ichida ham tovuq, ham o‘rdak, ham g‘oz bo‘lishi shart. Bunday variantlar soni nechta? \(26\) ta \(215\) ta \(225\) ta \(315\) ta Quyidagi rasmda tasvirlangan to‘rtburchakli piramidaning asosi kvadratdan iborat. Piramida asosining perimetri \(16\;{\rm{sm}}\) va balandligi \(2\sqrt 3 \;{\rm{sm}}\) ga teng. Piramidaning \(TBC\) yoqi ochilib, \(ABCD\) kvadrat bilan bir tekislikka rasmdagidek yoyildi:Bunga ko’ra, \(TT'\) ning uzunligini \(\left( {{\rm{sm}}} \right)\) toping. \(2\sqrt {11} \) \(2\sqrt 5 \) \(4\sqrt 5 \) \(4\sqrt {11} \) Parallelogramm diagonallarining uzunliklari \(6\;{\rm{sm}}\) va \(8\;{\rm{sm}}\) ga teng bo‘lib, ular o‘zaro perpendikulyar bo‘lsa, unga ichki chizilgan doira yuzini \(\left( {{\rm{s}}{{\rm{m}}^2}} \right)\) aniqlang. \(4,8\pi \) \(6,76\pi \) \(5,29\pi \) \(5,76\pi \) \({\log _{\frac{b}{a}}}\left( {\frac{{{a^2}}}{b}} \right) = - 3\) bo‘lsa, \({\log _{{a^2}b}}\left( {ab} \right)\) ning qiymatini toping. \(0,10\) \(1\) \(0,6\) \(0,8\) Quyidagi rasm uchun \({S_{BCD}} = 8\) bo‘lsa, \(BD\) ning qiymatini toping. \(1\) \(3\) \(2\) \(4\) \(P\left( x \right)\) ko‘phadni \(\left( {x + 1} \right) \cdot \left( {x - 2} \right) \cdot \left( {x - 3} \right) \cdot Q\left( x \right)\) ko‘phadga bo‘lganda, \(3x + 5\) qoldiq qoladi. Bunga ko‘ra, \(P\left( {x - 3} \right)\) ko‘phadni \({x^2} - 7x + 10\) ko‘phadga bo‘lgandagi qoldiqni toping. \(5x + 3\) \(3x - 4\) \(5x - 3\) \(3x + 4\) \({x^3} - 25x = 0\) tenglama nechta haqiqiy ildizga ega? \(4\) \(3\) \(2\) \(1\) \(\frac{{{\rm{tg}}x \cdot \cos x - \sin x \cdot {\rm{ctg}}x}}{{\sin x \cdot \cos x - {{\cos }^2}x}}\) ifodani soddalashtiring. \(\sec x\) \(\sin x\) \({\rm{cosec}}x\) \(\cos x\) Quyidagi rasmda \(y = f\left( x \right)\) va \(y = g\left( x \right)\) funksiyalarning grafiklari tasvirlangan: \({S_1} = 4\;{\rm{s}}{{\rm{m}}^2},\;\;{S_2} = 6\;{\rm{s}}{{\rm{m}}^2}\) va \({S_3} = 5\;{\rm{s}}{{\rm{m}}^2}\) bo‘lsa, \(\mathop \smallint \nolimits_0^6 \left( {f\left( x \right) - g\left( x \right)} \right)dx\;\)ning qiymatini toping. \(3\) \(6\) \(8\) \(9\) \(\;x - y = 1\) va \(z - t = - 2\) bo‘lsa, \(xz + yt - yz - xt - y + x - z + t\) ning qiymatini toping. \( - 1\) \(2\) \(1\) \( - 2\) Radiusi \(2\;{\rm{sm}}\) ga teng bo‘lgan doiraning markazidan bir tomonda ikkita parallel vatar o‘tkazilgan. Bu vatarlardan biri \(120^\circ \) li, ikkinchisi \(60^\circ \) li yoyni tortib turadi. Parallel vatarlar orasida joylashgan kesimning yuzini \(\left( {{\rm{s}}{{\rm{m}}^2}} \right)\) toping. Bu yerda \(\pi = 3\) deb oling. \(4,5\) \(4\) \(2\) \(3\) \(117\) soni \(90\) sonidan necha foiz ortiq? \(40\) \(35\) \(30\) \(25\) Quyidagi rasmda \(A\) va \(B\) qutilardagi tuxumlar soni ko‘rsatilgan. Qutilarning ikkalasi ham \(10\) ta tuxumni sig‘dira oladi. Bunga ko‘ra, \(B\) qutini to‘liq to‘ldirish uchun \(A\) qutidagi tuxumlarning qancha qismini \(B\) qutiga qo‘shish kerak? \(\frac{1}{2}\) \(\frac{2}{3}\) \(\frac{4}{5}\) \(\frac{3}{4}\) \(a + \frac{{\frac{{a - 3}}{a}}}{{\frac{3}{a} - 1}}:\frac{3}{a} = 4\) bo‘lsa, \(a\) ning qiymatini toping. \(1\) \(4\) \(6\) \(2\) Facebook Twitter VKontakte 0% Перезапустить тест