Report a question What's wrong with this question? You cannot submit an empty report. Please add some details. 123456789101112131415161718192021222324252627282930 Abiturentlar uchun matematika fanidan test savollari DTM test 2-variant Matematika fanidan online test Test savollari soni: 30 ta Barcha ma'lumotlarni to'g'ri kiriting. \({\log _{\frac{b}{a}}}\left( {\frac{{{a^2}}}{b}} \right) = - 3\) bo‘lsa, \({\log _{{a^2}b}}\left( {ab} \right)\) ning qiymatini toping. \(0,6\) \(1\) \(0,8\) \(0,10\) Arifmetik progressiya hadlari uchun \({a_6} - {a_2} = 3 + {a_7} - {a_5}\) tenglik o‘rinli bo‘lsa, \({a_{20}} - {a_{10}}\) ning qiymatini toping. \( - 15\) \( - 20\) \(15\) \(20\) \(117\) soni \(90\) sonidan necha foiz ortiq? \(40\) \(30\) \(25\) \(35\) \(f\left( x \right) = \cos 8x\cos 4x - \sin 8x\sin 4x\) bo‘lsa, \(f\left( {\frac{\pi }{{36}}} \right)\) ning qiymatini toping. \(\cos \frac{\pi }{9}\) \(\frac{{\sqrt 3 }}{2}\) \(\sin \frac{\pi }{9}\) \(\frac{1}{2}\) \(\frac{{{\rm{tg}}x \cdot \cos x - \sin x \cdot {\rm{ctg}}x}}{{\sin x \cdot \cos x - {{\cos }^2}x}}\) ifodani soddalashtiring. \(\sin x\) \({\rm{cosec}}x\) \(\cos x\) \(\sec x\) Gugurt cho‘plari yordamida kvadrat va muntazam oltiburchaklar joylashtirilib, quyidagi rasm hosil qilinyapti. Rasmning ichki qismida muntazam ko‘pburchak hosil bo‘ladi: Bunga ko‘ra, yuqoridagi rasmni hosil qilish uchun nechta gugurt cho‘plari ishlatilganini aniqlang. \(48\) \(36\) \(42\) \(60\) \(4\) ta tovuq, \(2\) ta o‘rdak va \(3\) ta g‘oz bor. Bir nechta parranda tanlanmoqda, bunda tanlangan parrandalar ichida ham tovuq, ham o‘rdak, ham g‘oz bo‘lishi shart. Bunday variantlar soni nechta? \(26\) ta \(315\) ta \(215\) ta \(225\) ta \({x^3} - 25x = 0\) tenglama nechta haqiqiy ildizga ega? \(3\) \(2\) \(4\) \(1\) \(\;1;\;\;2;\;\;2;\;\;3;\;\;3;\;\;3;\;\;4;\;\;4;\;\;4;\;\;4;\; \ldots \) ketma-ketlikning dastlabki \(100\) ta hadini yig‘indisi topilsin. \(915\) \(895\) \(875\) \(945\) Bo‘sh idishning og‘irligi \(4\) kg. Idish yarmigacha suv bilan to‘ldirilganda uning og‘irligi \(6\) kg bo‘ladi. Beshta shunday idish suv bilan to‘ldirilganda ularning umumiy og‘irligi necha kg bo‘ladi? \(40\) \(45\) \(50\) \(30\) Quyidagi rasmda \(A\) va \(B\) qutilardagi tuxumlar soni ko‘rsatilgan. Qutilarning ikkalasi ham \(10\) ta tuxumni sig‘dira oladi. Bunga ko‘ra, \(B\) qutini to‘liq to‘ldirish uchun \(A\) qutidagi tuxumlarning qancha qismini \(B\) qutiga qo‘shish kerak? \(\frac{4}{5}\) \(\frac{1}{2}\) \(\frac{3}{4}\) \(\frac{2}{3}\) Quyidagi rasm uchun \({S_{BCD}} = 8\) bo‘lsa, \(BD\) ning qiymatini toping. \(3\) \(1\) \(2\) \(4\) \(4\left( {2x - 3} \right) + 3\left( {2x - 5} \right) = 1\) tenglamaning ildizi \({x_0}\) bo‘lsa, \(2{x_0} + 3\) ning qiymatini toping. \(9\) \(7\) \(8\) \(2\) Telefon kompaniyasi \(t\) daqiqalik suhbat uchun \(y\) so‘m oladi va bu \(y = a + b \cdot \lg t\) qonuniyat asosida hisoblanadi. Agar \(1\) daqiqalik suhbat uchun \(0,5\) so‘m, \(10\) daqiqalik suhbat uchun \(3,4\) so‘m olinsa, \(b\) ning qiymatini toping. \(3\) \(2,7\) \(3,1\) \(2,9\) Parallelogramm diagonallarining uzunliklari \(6\;{\rm{sm}}\) va \(8\;{\rm{sm}}\) ga teng bo‘lib, ular o‘zaro perpendikulyar bo‘lsa, unga ichki chizilgan doira yuzini \(\left( {{\rm{s}}{{\rm{m}}^2}} \right)\) aniqlang. \(6,76\pi \) \(5,76\pi \) \(4,8\pi \) \(5,29\pi \) \(y = {x^2} - 6x - 7\) funksiyaning grafigi koordinata o‘qlarini \(A;\;\;B\) va \(C\) nuqtalarda kesib o‘tsa, \(ABC\) uchburchakning yuzini toping. \(21\) \(42\) \(28\) \(56\) Radiusi \(2\;{\rm{sm}}\) ga teng bo‘lgan doiraning markazidan bir tomonda ikkita parallel vatar o‘tkazilgan. Bu vatarlardan biri \(120^\circ \) li, ikkinchisi \(60^\circ \) li yoyni tortib turadi. Parallel vatarlar orasida joylashgan kesimning yuzini \(\left( {{\rm{s}}{{\rm{m}}^2}} \right)\) toping. Bu yerda \(\pi = 3\) deb oling. \(3\) \(4,5\) \(2\) \(4\) \({\left( {4{x^2} - \frac{1}{{\sqrt 2 }}y} \right)^9}\)ifodani ochib chiqqanimizda bitta hadi \(A \cdot {x^n}{y^n}\) bo‘lsa, \(A\) ni toping. \(8C_9^6\) \( - 8C_9^6\) \( - 4C_9^6\) \(4C_9^6\) Quyidagi rasmda tasvirlangan to‘rtburchakli piramidaning asosi kvadratdan iborat. Piramida asosining perimetri \(16\;{\rm{sm}}\) va balandligi \(2\sqrt 3 \;{\rm{sm}}\) ga teng. Piramidaning \(TBC\) yoqi ochilib, \(ABCD\) kvadrat bilan bir tekislikka rasmdagidek yoyildi:Bunga ko’ra, \(TT'\) ning uzunligini \(\left( {{\rm{sm}}} \right)\) toping. \(2\sqrt 5 \) \(2\sqrt {11} \) \(4\sqrt {11} \) \(4\sqrt 5 \) \(\;A = \left\{ {1,\;3,\;5,\;7,\;9} \right\}\) va \(B = \left\{ {2,\;4,\;6,\;8,\;10} \right\}\) to‘plamlarning har biridan bittadan son tanlansa, bu sonlarning ko‘paytmasi \(25\) dan katta va \(45\) dan kichik bo‘lish ehtimoli necha foizga teng? \(20\) \(25\) \(15\) \(24\) \(4079 \ge \overline {40x9} \) tengsizlik to‘g‘ri bo‘ladigan \(x\) raqamining barcha qiymatlari yig‘indisini toping. \(36\) \(28\) \(17\) \(24\) \(P\left( x \right)\) ko‘phadni \(\left( {x + 1} \right) \cdot \left( {x - 2} \right) \cdot \left( {x - 3} \right) \cdot Q\left( x \right)\) ko‘phadga bo‘lganda, \(3x + 5\) qoldiq qoladi. Bunga ko‘ra, \(P\left( {x - 3} \right)\) ko‘phadni \({x^2} - 7x + 10\) ko‘phadga bo‘lgandagi qoldiqni toping. \(5x + 3\) \(3x + 4\) \(5x - 3\) \(3x - 4\) Quyidagi rasmda \(y = f\left( x \right)\) va \(y = g\left( x \right)\) funksiyalarning grafiklari tasvirlangan: \({S_1} = 4\;{\rm{s}}{{\rm{m}}^2},\;\;{S_2} = 6\;{\rm{s}}{{\rm{m}}^2}\) va \({S_3} = 5\;{\rm{s}}{{\rm{m}}^2}\) bo‘lsa, \(\mathop \smallint \nolimits_0^6 \left( {f\left( x \right) - g\left( x \right)} \right)dx\;\)ning qiymatini toping. \(9\) \(8\) \(3\) \(6\) \(EKUB\left( {a\;;\;a + 1} \right) = 2a - 15\) bo‘lsa, \(EKUB\left( {a + 2\;;a - 3} \right)\) ning qiymatini toping. \(5\;\) \(3\) \(4\) \(2\) \(a + \frac{{\frac{{a - 3}}{a}}}{{\frac{3}{a} - 1}}:\frac{3}{a} = 4\) bo‘lsa, \(a\) ning qiymatini toping. \(1\) \(4\) \(6\) \(2\) \(\;x - y = 1\) va \(z - t = - 2\) bo‘lsa, \(xz + yt - yz - xt - y + x - z + t\) ning qiymatini toping. \( - 2\) \(1\) \(2\) \( - 1\) \(f\left( x \right) = \sqrt {3x - \sqrt {2x} } \) bo‘lsa, \(f'\left( 2 \right)\) ning qiymatini toping. \(\frac{5}{8}\) \(5\) \(\frac{5}{2}\) \(\frac{5}{4}\) \(2{x^2} + 3x - 7 = 0\) tenglamaning ildizlari \({x_1}\) va \({x_2}\) bo‘lsa, \(2x_1^2 - 3{x_2} + \sqrt {2x_1^2 + 3{x_1} + 18} \) ni qiymatini toping. \(\frac{{11}}{2}\) \(\frac{{15}}{2}\) \(\frac{{21}}{2}\) \(\frac{{33}}{2}\) Quyidagi rasmda \(y = f\left( x \right)\) funksiya grafigi tasvirlangan:Rasmda berilgan ma’lumotlardan foydalanib, \(f\left( 0 \right) + h\left( 2 \right) - f\left( 3 \right) + h\left( 0 \right) = f\left( x \right)\) tenglamaning butun ildizlari yig‘indisini toping. Bu yerda \(f\left( x \right)\) va \(h\left( x \right)\) funksiyalar \(y = x\) to‘g‘ri chiziqqa nisbatan simmetrik. \(2\) \(0\) \(6\) \(3\) Qirrasining uzunligi \(a\) ga teng bo‘lgan muntazam tetraedrning hajmini toping. \(\frac{{{a^3}\sqrt 3 }}{{12}}\) \(\frac{{{a^3}\sqrt 3 }}{{24}}\) \(\frac{{{a^3}\sqrt 2 }}{{24}}\) \(\frac{{{a^3}\sqrt 2 }}{{12}}\) Facebook Twitter VKontakte 0% Перезапустить тест