Report a question What's wrong with this question? You cannot submit an empty report. Please add some details. 123456789101112131415161718192021222324252627282930 Matematika BMBA 2024 3-variant Matematika fanidan oliy ta'lim muassasalariga kirish uchun tayyorlanayotgan abiturentlar uchun test savollari 3-variant Savollar soni: 30 ta Barcha ma'lumotlarni to'g'ri kiriting. \(f\left( x \right) = \sqrt {1 - x} \) bo‘lsa, \(f\left( {f\left( x \right)} \right)\) funksiyaning qiymatlar to‘plamini toping. \(\left[ {0;1} \right]\) \(\left( { - 1;1} \right]\) \(\left( {0;1} \right]\) \(\left[ { - 1;1} \right]\) To‘g‘ri burchakli uchburchakning bitta o‘tkir burchagi \(60^\circ \) bo‘lsa, gipotenuzaning katta katetga nisbatini toping. \(\frac{{\sqrt 3 }}{2}\) \(2\) \(\frac{1}{2}\) \(\frac{2}{{\sqrt 3 }}\) \({3^{\sqrt {5 - x} }} \le \left( {x - 4} \right) \cdot \ln \left( {x - 4} \right)\) tengsizlikni qanoatlantiruvchi butun sonlar nechta? \(2\) \(0\) \(3\) \(1\) \(360\;\)va \(2400\) ning umumiy murakkab bo‘luvchilari yig‘indisini toping. \(350\) \(349\) \(360\) \(\;348\) \(A\) va \(B\) punktlar orasidagi masofa avval asfaltlangan yo‘l orqali, so‘ngra tekislangan yo‘l orqali o‘tadi. Mashina \(A\) dan \(B\) ga borishda asfalt yo‘lda o‘rtacha \(45\;{\rm{km}}/{\rm{soat}}\) tezlikda, tekislangan yo‘lda esa \(30{\rm{\;km}}/{\rm{soat}}\) tezlikda harakatlanib, manzilga \(8{\rm{\;soat}}\;40\;{\rm{minut}}\)da yetib bordi. Ortga qaytishda tekislangan yo‘lda tezligini \({\rm{soati}}\)ga \(2\;{\rm{km}}\) oshirdi, asfaltlangan yo‘lda esa tezligini \({\rm{soati}}\)ga \(5\;{\rm{km}}\) kamaytirdi va yo‘lga \(9\;{\rm{soat}}\) vaqt sarfladi. Shaharlar orasidagi masofani \(\left( {{\rm{km}}} \right)\) toping. \(360\) \(300\) \(330\) \(315\) \(y = {x^3}\) va \(y = 4x\) funksiyalarning grafiklari bilan chegaralangan soha yuzini toping. \(4\) \(8\) \(2\) \(1\) \({a^2} + {b^2} = 1\) bo‘lsa, \(\left( {{a^6} + 3{a^2}{b^2} + {b^6} + {{\left( {{a^9} + 3{a^6}{b^6} + {b^9}} \right)}^{{a^2} + {b^2} - 1}} + {{\left( {{a^{12}} + 3{a^6}{b^6} + {b^{12}}} \right)}^{{a^2} + {b^2} - 1}}} \right):3\) ni soddalashtiring. \(2\) \(1\) \(a + b\) \(ab\) \(A\) va \(B\) to‘plamlari uchun ushbu \(S\left( A \right) = 10,\;\;S\left( B \right) = 7{\rm{\;}}\)va\({\rm{\;}}S\left( {A \cap B} \right) = 3{\rm{\;}}\)tengliklar berilgan bo‘lsa,\({\rm{\;}}S\left( {A{\rm{|}}B} \right) + S\left( {B{\rm{|}}A} \right)\) ni toping. Bunda \(S\left( U \right) - U\) to‘plamning elementlari soni. \(13\) \(8\) \(9\) \(11\) \({x^2} - 3x + 1 = 0\) tenglamaning ildizlari \({x_1}\) va \({x_2}\) bo‘lsa, \(\frac{6}{{{x_1} + \frac{2}{{{x_1} + \frac{1}{{{x_2}}}}}}} + \left( {{x_1} + {x_2}} \right) - 3 \cdot \left( {{x_1}{x_2}} \right)\) ning qiymatini toping. \(4\) \(3\) \(2\) \(1\) Katetlari \(4\) va \(6\;\)ga teng bo‘lgan to‘g‘ri burchakli uchburchakning tomonlari asos qilib uchburchak tashqarisida kvadratlar yasalgan. Bu kvadratlar markazlarini tutashtirishdan hosil bo‘lgan uchburchak yuzini toping. \(50\) \(25\) \(75\) \(100\) \({\log _2}\left( {\cos x - \sin x} \right) + {\log _2}\left( {\cos x + \sin x} \right) = - 1\) tenglamaning \(\left[ {0;2\pi } \right)\) oraliqdagi yechimlarini toping. \(\left\{ {\frac{\pi }{6};\;\frac{{11\pi }}{6}} \right\}\) \(\left\{ {\frac{\pi }{6}} \right\}\) \(\left\{ {\frac{\pi }{6};\;\frac{{5\pi }}{6};\;\frac{{11\pi }}{6}} \right\}\) \(\left\{ {\frac{\pi }{6};\;\frac{{7\pi }}{6};} \right\}\) Gipotenuzasining uzunligi \(12\;{\rm{sm}}\) ga teng bo‘lgan to‘g‘ri burchakli uchburchakning og‘irlik markazidan ortomarkazigacha bo‘lgan masofani \(\left( {{\rm{sm}}} \right)\;\)toping. \(2\) \(4\) \(2,5\) \(6\) \(f\left( x \right) = 9 - {x^2}\) funksiya grafigini yasang. Quyidagi rasmda \(y = {x^2}\) funksiya grafigi va \(ABCD\) teng yonli trapetsiya tasvirlangan:Agar trapetsiyani o‘tkir burchagining tangensi \(8\) ga, diagonali \(8\sqrt 5 \) teng bo‘lsa, trapetsiyaning yuzini toping. Bunda trapetsiya asoslari \(Ox\) o‘qiga parallel. \(256\) \(120\) \(128\) \(64\) \(\frac{{244 \cdot 395 - 151}}{{244 + 395 \cdot 243}}\;\) ni hisoblang. \( - 2\) \(1\) \(2\) \( - 1\) Quyida yozilgan formulalardan nechtasi to‘g‘ri? \(f\left( x \right) = \sin t\) bo‘lsa, \(f'\left( x \right) = \cos t\) bo‘ladi. \(f\left( x \right) = \sin t \cdot x\) bo‘lsa, \(f'\left( x \right) = \sin t\) bo‘ladi. \(f\left( x \right) = \cos t\) bo‘lsa, \(f'\left( x \right) = 0\) bo‘ladi. \(f\left( x \right) = \sec t\) bo‘lsa, \(f'\left( x \right) = \frac{1}{{{{\cos }^2}t}}\) bo‘ladi. \(1\) \(3\) \(4\) \(2\) \({\left( {2{x^2} - {y^7} + 1} \right)^{12}} = \ldots + p \cdot {x^2} \cdot {y^{56}} + \ldots \) bo‘lsa, \(p\) ning qiymatini toping. \( - 1980\) \(3960\) \( - 3960\) \(1980\) \(\;{3^{11}},\;\;{5^{14}},\;\;{7^{17}},\;\;{9^{20}},\;\;{11^{23}},\;\; \ldots ,\;\;{x^{71}}\) ketma- ketlikdan foydalanib, \({x^{71}}\) ning oxirgi raqamini toping. \(7\) \(3\) \(5\) \(4\) Yozuvida faqat toq raqamlar qatnashgan natural sonlarni “yoqimtoy” sonlar deymiz. Uch xonali “yoqimtoy” sonlar nechta? \(125\) \(90\) \(300\) \(60\) \(\frac{{\frac{4}{7} + \frac{4}{8} + \frac{4}{9}}}{{\frac{2}{{21}} + \frac{2}{{24}} + \frac{2}{{27}}}}\) ni hisoblang. \(9\) \(10\) \(8\) \(6\) \({353^{353}}\) sonini \(5\) ga bo‘lgandagi qoldiqni toping. \(1\) \(4\) \(2\) \(3\) Sardor quyida ko‘rsatilgan qog‘ozda ikkita ikki xonali sonni ayirdi. So‘ng qog‘ozga siyoh to‘kildi.Siyoh to‘kilgan kataklarda yozilgan raqamlar yig‘indisini toping. \(12\) \(10\) \(11\) \(9\) Arifmetik progressiyaning hadlari uchun ushbu \(3{a_5} = 5{a_3}\) va \({a_8} + {a_{10}} - {a_2} = 112\) tengliklar o‘rinli bo‘lsa, \({a_8}\) ning qiymatini toping. \(56\) \(64\) \(80\) \(120\) \(\left( {{x^2} + 24x + 24} \right) \cdot \left( {{x^2} + x + 24} \right) = 24{x^2}\) tenglamaning haqiqiy ildizlari yig‘indisini toping. \( - 23\) \( - 24\) \( - 25\) \(--26\) \({\left( {1 - x + {x^2}} \right)^{10}} = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_{20}}{x^{20}}\) bo‘lsa, \({a_0} + {a_2} + \ldots + {a_{20}}\) ning qiymatini toping. \(\frac{{{3^{10}} + 1}}{2}\) \({2^{10}} - 1\) \(\frac{{{3^{10}} - 1}}{2}\) \({2^{10}} + 1\) Quyidagi rasmda asosi radiusi \(4\) \({\rm{sm}}\) va balandligi \(4\pi \) \({\rm{sm}}\) bo‘lgan karton silindrning sirtidagi \(A\) va \(C\;\)nuqtalarni qalam bilan tutashtirilgani tasvirlangan:\(BC = 3DC\) bo‘lsa, \(AC\) chiziqning minimal uzunligi necha \(\left( {{\rm{sm}}} \right)\) bo‘ladi? \(6\pi \) \(5\pi \) \(7\pi \) \(8\pi \) Tarkibida \(85\% \) suv bo‘lgan \(0,5\) tonna sellyuloza qorishmasidan \(75\% \) suv bo‘lgan qorishma olish uchun necha kilogramm suvni bug‘lantirib yuborish kerak? \(50\) \(125\) \(100\;\) \(200\) Quyidagi rasmda \(y = f\left( x \right)\) funksiya grafigi tasvirlangan:Rasmda berilgan ma’lumotlardan foydalanib, quyidagi integralni qiymatini toping. \(\mathop \smallint \nolimits_1^2 f\left( x \right)dx + \mathop \smallint \nolimits_2^4 {f^{ - 1}}\left( x \right)dx\) \(6\) \(8\) \(2\) \(4\) Quyidagi rasmda radiusi \(10\;{\rm{sm}}\) bo‘lgan aylana tasvirlangan: \(AC\) kichik yoy uzunligi \(8\;{\rm{sm}}\) ga teng bo‘lsa, \(BC\) ni \(\left( {{\rm{sm}}} \right)\) toping. \(\frac{{10}}{{\cos 0,8}} - 10\) \(\frac{{10}}{{\sin 0,6}} + 10\) \(10 \cdot \left( {1 - \cos 0,8} \right)\) \(10 \cdot \left( {1 - \sin 0,6} \right)\) Dastlabki yuzta sondan tavakkaliga bittasi tanlandi. Tanlangan sonning \(3\) ga ham, \(4\) ga ham karrali, lekin \(5\) ga karrali bo‘lmaslik ehtimoli qanday? \(0,05\) \(0,04\) \(0,07\) \(0,08\) Facebook Twitter VKontakte 0% Перезапустить тест