Report a question What's wrong with this question? You cannot submit an empty report. Please add some details. 123456789101112131415161718192021222324252627282930 Matematika BMBA 2024 3-variant Matematika fanidan oliy ta'lim muassasalariga kirish uchun tayyorlanayotgan abiturentlar uchun test savollari 3-variant Savollar soni: 30 ta Barcha ma'lumotlarni to'g'ri kiriting. Quyidagi rasmda \(y = {x^2}\) funksiya grafigi va \(ABCD\) teng yonli trapetsiya tasvirlangan:Agar trapetsiyani o‘tkir burchagining tangensi \(8\) ga, diagonali \(8\sqrt 5 \) teng bo‘lsa, trapetsiyaning yuzini toping. Bunda trapetsiya asoslari \(Ox\) o‘qiga parallel. \(256\) \(64\) \(128\) \(120\) \(\left( {{x^2} + 24x + 24} \right) \cdot \left( {{x^2} + x + 24} \right) = 24{x^2}\) tenglamaning haqiqiy ildizlari yig‘indisini toping. \( - 23\) \( - 25\) \( - 24\) \(--26\) \({\log _2}\left( {\cos x - \sin x} \right) + {\log _2}\left( {\cos x + \sin x} \right) = - 1\) tenglamaning \(\left[ {0;2\pi } \right)\) oraliqdagi yechimlarini toping. \(\left\{ {\frac{\pi }{6}} \right\}\) \(\left\{ {\frac{\pi }{6};\;\frac{{5\pi }}{6};\;\frac{{11\pi }}{6}} \right\}\) \(\left\{ {\frac{\pi }{6};\;\frac{{11\pi }}{6}} \right\}\) \(\left\{ {\frac{\pi }{6};\;\frac{{7\pi }}{6};} \right\}\) To‘g‘ri burchakli uchburchakning bitta o‘tkir burchagi \(60^\circ \) bo‘lsa, gipotenuzaning katta katetga nisbatini toping. \(\frac{2}{{\sqrt 3 }}\) \(\frac{1}{2}\) \(\frac{{\sqrt 3 }}{2}\) \(2\) Yozuvida faqat toq raqamlar qatnashgan natural sonlarni “yoqimtoy” sonlar deymiz. Uch xonali “yoqimtoy” sonlar nechta? \(60\) \(300\) \(90\) \(125\) Quyidagi rasmda \(y = f\left( x \right)\) funksiya grafigi tasvirlangan:Rasmda berilgan ma’lumotlardan foydalanib, quyidagi integralni qiymatini toping. \(\mathop \smallint \nolimits_1^2 f\left( x \right)dx + \mathop \smallint \nolimits_2^4 {f^{ - 1}}\left( x \right)dx\) \(6\) \(2\) \(8\) \(4\) \({a^2} + {b^2} = 1\) bo‘lsa, \(\left( {{a^6} + 3{a^2}{b^2} + {b^6} + {{\left( {{a^9} + 3{a^6}{b^6} + {b^9}} \right)}^{{a^2} + {b^2} - 1}} + {{\left( {{a^{12}} + 3{a^6}{b^6} + {b^{12}}} \right)}^{{a^2} + {b^2} - 1}}} \right):3\) ni soddalashtiring. \(ab\) \(a + b\) \(2\) \(1\) \(\;{3^{11}},\;\;{5^{14}},\;\;{7^{17}},\;\;{9^{20}},\;\;{11^{23}},\;\; \ldots ,\;\;{x^{71}}\) ketma- ketlikdan foydalanib, \({x^{71}}\) ning oxirgi raqamini toping. \(4\) \(5\) \(7\) \(3\) \({3^{\sqrt {5 - x} }} \le \left( {x - 4} \right) \cdot \ln \left( {x - 4} \right)\) tengsizlikni qanoatlantiruvchi butun sonlar nechta? \(2\) \(3\) \(1\) \(0\) \({\left( {1 - x + {x^2}} \right)^{10}} = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_{20}}{x^{20}}\) bo‘lsa, \({a_0} + {a_2} + \ldots + {a_{20}}\) ning qiymatini toping. \(\frac{{{3^{10}} + 1}}{2}\) \(\frac{{{3^{10}} - 1}}{2}\) \({2^{10}} + 1\) \({2^{10}} - 1\) \(A\) va \(B\) to‘plamlari uchun ushbu \(S\left( A \right) = 10,\;\;S\left( B \right) = 7{\rm{\;}}\)va\({\rm{\;}}S\left( {A \cap B} \right) = 3{\rm{\;}}\)tengliklar berilgan bo‘lsa,\({\rm{\;}}S\left( {A{\rm{|}}B} \right) + S\left( {B{\rm{|}}A} \right)\) ni toping. Bunda \(S\left( U \right) - U\) to‘plamning elementlari soni. \(11\) \(9\) \(8\) \(13\) Katetlari \(4\) va \(6\;\)ga teng bo‘lgan to‘g‘ri burchakli uchburchakning tomonlari asos qilib uchburchak tashqarisida kvadratlar yasalgan. Bu kvadratlar markazlarini tutashtirishdan hosil bo‘lgan uchburchak yuzini toping. \(25\) \(50\) \(75\) \(100\) Quyidagi rasmda radiusi \(10\;{\rm{sm}}\) bo‘lgan aylana tasvirlangan: \(AC\) kichik yoy uzunligi \(8\;{\rm{sm}}\) ga teng bo‘lsa, \(BC\) ni \(\left( {{\rm{sm}}} \right)\) toping. \(\frac{{10}}{{\cos 0,8}} - 10\) \(\frac{{10}}{{\sin 0,6}} + 10\) \(10 \cdot \left( {1 - \sin 0,6} \right)\) \(10 \cdot \left( {1 - \cos 0,8} \right)\) \({\left( {2{x^2} - {y^7} + 1} \right)^{12}} = \ldots + p \cdot {x^2} \cdot {y^{56}} + \ldots \) bo‘lsa, \(p\) ning qiymatini toping. \( - 1980\) \(1980\) \(3960\) \( - 3960\) Quyidagi rasmda asosi radiusi \(4\) \({\rm{sm}}\) va balandligi \(4\pi \) \({\rm{sm}}\) bo‘lgan karton silindrning sirtidagi \(A\) va \(C\;\)nuqtalarni qalam bilan tutashtirilgani tasvirlangan:\(BC = 3DC\) bo‘lsa, \(AC\) chiziqning minimal uzunligi necha \(\left( {{\rm{sm}}} \right)\) bo‘ladi? \(8\pi \) \(7\pi \) \(5\pi \) \(6\pi \) \(\frac{{244 \cdot 395 - 151}}{{244 + 395 \cdot 243}}\;\) ni hisoblang. \(1\) \( - 1\) \(2\) \( - 2\) \(A\) va \(B\) punktlar orasidagi masofa avval asfaltlangan yo‘l orqali, so‘ngra tekislangan yo‘l orqali o‘tadi. Mashina \(A\) dan \(B\) ga borishda asfalt yo‘lda o‘rtacha \(45\;{\rm{km}}/{\rm{soat}}\) tezlikda, tekislangan yo‘lda esa \(30{\rm{\;km}}/{\rm{soat}}\) tezlikda harakatlanib, manzilga \(8{\rm{\;soat}}\;40\;{\rm{minut}}\)da yetib bordi. Ortga qaytishda tekislangan yo‘lda tezligini \({\rm{soati}}\)ga \(2\;{\rm{km}}\) oshirdi, asfaltlangan yo‘lda esa tezligini \({\rm{soati}}\)ga \(5\;{\rm{km}}\) kamaytirdi va yo‘lga \(9\;{\rm{soat}}\) vaqt sarfladi. Shaharlar orasidagi masofani \(\left( {{\rm{km}}} \right)\) toping. \(300\) \(330\) \(360\) \(315\) \(f\left( x \right) = 9 - {x^2}\) funksiya grafigini yasang. Arifmetik progressiyaning hadlari uchun ushbu \(3{a_5} = 5{a_3}\) va \({a_8} + {a_{10}} - {a_2} = 112\) tengliklar o‘rinli bo‘lsa, \({a_8}\) ning qiymatini toping. \(56\) \(120\) \(64\) \(80\) \({x^2} - 3x + 1 = 0\) tenglamaning ildizlari \({x_1}\) va \({x_2}\) bo‘lsa, \(\frac{6}{{{x_1} + \frac{2}{{{x_1} + \frac{1}{{{x_2}}}}}}} + \left( {{x_1} + {x_2}} \right) - 3 \cdot \left( {{x_1}{x_2}} \right)\) ning qiymatini toping. \(2\) \(3\) \(4\) \(1\) \({353^{353}}\) sonini \(5\) ga bo‘lgandagi qoldiqni toping. \(2\) \(3\) \(4\) \(1\) \(y = {x^3}\) va \(y = 4x\) funksiyalarning grafiklari bilan chegaralangan soha yuzini toping. \(1\) \(2\) \(4\) \(8\) Gipotenuzasining uzunligi \(12\;{\rm{sm}}\) ga teng bo‘lgan to‘g‘ri burchakli uchburchakning og‘irlik markazidan ortomarkazigacha bo‘lgan masofani \(\left( {{\rm{sm}}} \right)\;\)toping. \(2\) \(4\) \(6\) \(2,5\) Sardor quyida ko‘rsatilgan qog‘ozda ikkita ikki xonali sonni ayirdi. So‘ng qog‘ozga siyoh to‘kildi.Siyoh to‘kilgan kataklarda yozilgan raqamlar yig‘indisini toping. \(9\) \(10\) \(11\) \(12\) Dastlabki yuzta sondan tavakkaliga bittasi tanlandi. Tanlangan sonning \(3\) ga ham, \(4\) ga ham karrali, lekin \(5\) ga karrali bo‘lmaslik ehtimoli qanday? \(0,08\) \(0,07\) \(0,04\) \(0,05\) \(f\left( x \right) = \sqrt {1 - x} \) bo‘lsa, \(f\left( {f\left( x \right)} \right)\) funksiyaning qiymatlar to‘plamini toping. \(\left( { - 1;1} \right]\) \(\left( {0;1} \right]\) \(\left[ {0;1} \right]\) \(\left[ { - 1;1} \right]\) Tarkibida \(85\% \) suv bo‘lgan \(0,5\) tonna sellyuloza qorishmasidan \(75\% \) suv bo‘lgan qorishma olish uchun necha kilogramm suvni bug‘lantirib yuborish kerak? \(125\) \(200\) \(50\) \(100\;\) \(\frac{{\frac{4}{7} + \frac{4}{8} + \frac{4}{9}}}{{\frac{2}{{21}} + \frac{2}{{24}} + \frac{2}{{27}}}}\) ni hisoblang. \(10\) \(8\) \(9\) \(6\) Quyida yozilgan formulalardan nechtasi to‘g‘ri? \(f\left( x \right) = \sin t\) bo‘lsa, \(f'\left( x \right) = \cos t\) bo‘ladi. \(f\left( x \right) = \sin t \cdot x\) bo‘lsa, \(f'\left( x \right) = \sin t\) bo‘ladi. \(f\left( x \right) = \cos t\) bo‘lsa, \(f'\left( x \right) = 0\) bo‘ladi. \(f\left( x \right) = \sec t\) bo‘lsa, \(f'\left( x \right) = \frac{1}{{{{\cos }^2}t}}\) bo‘ladi. \(4\) \(1\) \(2\) \(3\) \(360\;\)va \(2400\) ning umumiy murakkab bo‘luvchilari yig‘indisini toping. \(\;348\) \(350\) \(360\) \(349\) Facebook Twitter VKontakte 0% Перезапустить тест