Report a question What's wrong with this question? You cannot submit an empty report. Please add some details. 123456789101112131415161718192021222324252627282930 Matematika BMBA 2024 3-variant Matematika fanidan oliy ta'lim muassasalariga kirish uchun tayyorlanayotgan abiturentlar uchun test savollari 3-variant Savollar soni: 30 ta Barcha ma'lumotlarni to'g'ri kiriting. \({a^2} + {b^2} = 1\) bo‘lsa, \(\left( {{a^6} + 3{a^2}{b^2} + {b^6} + {{\left( {{a^9} + 3{a^6}{b^6} + {b^9}} \right)}^{{a^2} + {b^2} - 1}} + {{\left( {{a^{12}} + 3{a^6}{b^6} + {b^{12}}} \right)}^{{a^2} + {b^2} - 1}}} \right):3\) ni soddalashtiring. \(a + b\) \(2\) \(1\) \(ab\) Sardor quyida ko‘rsatilgan qog‘ozda ikkita ikki xonali sonni ayirdi. So‘ng qog‘ozga siyoh to‘kildi.Siyoh to‘kilgan kataklarda yozilgan raqamlar yig‘indisini toping. \(12\) \(10\) \(9\) \(11\) \({\left( {1 - x + {x^2}} \right)^{10}} = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_{20}}{x^{20}}\) bo‘lsa, \({a_0} + {a_2} + \ldots + {a_{20}}\) ning qiymatini toping. \({2^{10}} - 1\) \(\frac{{{3^{10}} - 1}}{2}\) \(\frac{{{3^{10}} + 1}}{2}\) \({2^{10}} + 1\) Arifmetik progressiyaning hadlari uchun ushbu \(3{a_5} = 5{a_3}\) va \({a_8} + {a_{10}} - {a_2} = 112\) tengliklar o‘rinli bo‘lsa, \({a_8}\) ning qiymatini toping. \(120\) \(80\) \(64\) \(56\) \(f\left( x \right) = \sqrt {1 - x} \) bo‘lsa, \(f\left( {f\left( x \right)} \right)\) funksiyaning qiymatlar to‘plamini toping. \(\left( { - 1;1} \right]\) \(\left[ { - 1;1} \right]\) \(\left( {0;1} \right]\) \(\left[ {0;1} \right]\) \(f\left( x \right) = 9 - {x^2}\) funksiya grafigini yasang. \(\left( {{x^2} + 24x + 24} \right) \cdot \left( {{x^2} + x + 24} \right) = 24{x^2}\) tenglamaning haqiqiy ildizlari yig‘indisini toping. \( - 25\) \( - 23\) \( - 24\) \(--26\) Katetlari \(4\) va \(6\;\)ga teng bo‘lgan to‘g‘ri burchakli uchburchakning tomonlari asos qilib uchburchak tashqarisida kvadratlar yasalgan. Bu kvadratlar markazlarini tutashtirishdan hosil bo‘lgan uchburchak yuzini toping. \(25\) \(50\) \(100\) \(75\) \({3^{\sqrt {5 - x} }} \le \left( {x - 4} \right) \cdot \ln \left( {x - 4} \right)\) tengsizlikni qanoatlantiruvchi butun sonlar nechta? \(2\) \(3\) \(0\) \(1\) Quyidagi rasmda \(y = f\left( x \right)\) funksiya grafigi tasvirlangan:Rasmda berilgan ma’lumotlardan foydalanib, quyidagi integralni qiymatini toping. \(\mathop \smallint \nolimits_1^2 f\left( x \right)dx + \mathop \smallint \nolimits_2^4 {f^{ - 1}}\left( x \right)dx\) \(8\) \(6\) \(4\) \(2\) \(\;{3^{11}},\;\;{5^{14}},\;\;{7^{17}},\;\;{9^{20}},\;\;{11^{23}},\;\; \ldots ,\;\;{x^{71}}\) ketma- ketlikdan foydalanib, \({x^{71}}\) ning oxirgi raqamini toping. \(3\) \(5\) \(7\) \(4\) To‘g‘ri burchakli uchburchakning bitta o‘tkir burchagi \(60^\circ \) bo‘lsa, gipotenuzaning katta katetga nisbatini toping. \(\frac{{\sqrt 3 }}{2}\) \(\frac{1}{2}\) \(2\) \(\frac{2}{{\sqrt 3 }}\) \(y = {x^3}\) va \(y = 4x\) funksiyalarning grafiklari bilan chegaralangan soha yuzini toping. \(8\) \(1\) \(4\) \(2\) \({x^2} - 3x + 1 = 0\) tenglamaning ildizlari \({x_1}\) va \({x_2}\) bo‘lsa, \(\frac{6}{{{x_1} + \frac{2}{{{x_1} + \frac{1}{{{x_2}}}}}}} + \left( {{x_1} + {x_2}} \right) - 3 \cdot \left( {{x_1}{x_2}} \right)\) ning qiymatini toping. \(4\) \(2\) \(3\) \(1\) \(A\) va \(B\) to‘plamlari uchun ushbu \(S\left( A \right) = 10,\;\;S\left( B \right) = 7{\rm{\;}}\)va\({\rm{\;}}S\left( {A \cap B} \right) = 3{\rm{\;}}\)tengliklar berilgan bo‘lsa,\({\rm{\;}}S\left( {A{\rm{|}}B} \right) + S\left( {B{\rm{|}}A} \right)\) ni toping. Bunda \(S\left( U \right) - U\) to‘plamning elementlari soni. \(8\) \(13\) \(9\) \(11\) Gipotenuzasining uzunligi \(12\;{\rm{sm}}\) ga teng bo‘lgan to‘g‘ri burchakli uchburchakning og‘irlik markazidan ortomarkazigacha bo‘lgan masofani \(\left( {{\rm{sm}}} \right)\;\)toping. \(6\) \(2,5\) \(4\) \(2\) \(360\;\)va \(2400\) ning umumiy murakkab bo‘luvchilari yig‘indisini toping. \(349\) \(\;348\) \(350\) \(360\) Yozuvida faqat toq raqamlar qatnashgan natural sonlarni “yoqimtoy” sonlar deymiz. Uch xonali “yoqimtoy” sonlar nechta? \(125\) \(300\) \(90\) \(60\) \({\log _2}\left( {\cos x - \sin x} \right) + {\log _2}\left( {\cos x + \sin x} \right) = - 1\) tenglamaning \(\left[ {0;2\pi } \right)\) oraliqdagi yechimlarini toping. \(\left\{ {\frac{\pi }{6};\;\frac{{11\pi }}{6}} \right\}\) \(\left\{ {\frac{\pi }{6}} \right\}\) \(\left\{ {\frac{\pi }{6};\;\frac{{7\pi }}{6};} \right\}\) \(\left\{ {\frac{\pi }{6};\;\frac{{5\pi }}{6};\;\frac{{11\pi }}{6}} \right\}\) \({353^{353}}\) sonini \(5\) ga bo‘lgandagi qoldiqni toping. \(4\) \(3\) \(2\) \(1\) \(\frac{{244 \cdot 395 - 151}}{{244 + 395 \cdot 243}}\;\) ni hisoblang. \( - 1\) \(1\) \(2\) \( - 2\) \({\left( {2{x^2} - {y^7} + 1} \right)^{12}} = \ldots + p \cdot {x^2} \cdot {y^{56}} + \ldots \) bo‘lsa, \(p\) ning qiymatini toping. \( - 3960\) \(1980\) \( - 1980\) \(3960\) Quyida yozilgan formulalardan nechtasi to‘g‘ri? \(f\left( x \right) = \sin t\) bo‘lsa, \(f'\left( x \right) = \cos t\) bo‘ladi. \(f\left( x \right) = \sin t \cdot x\) bo‘lsa, \(f'\left( x \right) = \sin t\) bo‘ladi. \(f\left( x \right) = \cos t\) bo‘lsa, \(f'\left( x \right) = 0\) bo‘ladi. \(f\left( x \right) = \sec t\) bo‘lsa, \(f'\left( x \right) = \frac{1}{{{{\cos }^2}t}}\) bo‘ladi. \(3\) \(4\) \(2\) \(1\) Quyidagi rasmda radiusi \(10\;{\rm{sm}}\) bo‘lgan aylana tasvirlangan: \(AC\) kichik yoy uzunligi \(8\;{\rm{sm}}\) ga teng bo‘lsa, \(BC\) ni \(\left( {{\rm{sm}}} \right)\) toping. \(\frac{{10}}{{\cos 0,8}} - 10\) \(10 \cdot \left( {1 - \sin 0,6} \right)\) \(10 \cdot \left( {1 - \cos 0,8} \right)\) \(\frac{{10}}{{\sin 0,6}} + 10\) Tarkibida \(85\% \) suv bo‘lgan \(0,5\) tonna sellyuloza qorishmasidan \(75\% \) suv bo‘lgan qorishma olish uchun necha kilogramm suvni bug‘lantirib yuborish kerak? \(200\) \(50\) \(100\;\) \(125\) \(A\) va \(B\) punktlar orasidagi masofa avval asfaltlangan yo‘l orqali, so‘ngra tekislangan yo‘l orqali o‘tadi. Mashina \(A\) dan \(B\) ga borishda asfalt yo‘lda o‘rtacha \(45\;{\rm{km}}/{\rm{soat}}\) tezlikda, tekislangan yo‘lda esa \(30{\rm{\;km}}/{\rm{soat}}\) tezlikda harakatlanib, manzilga \(8{\rm{\;soat}}\;40\;{\rm{minut}}\)da yetib bordi. Ortga qaytishda tekislangan yo‘lda tezligini \({\rm{soati}}\)ga \(2\;{\rm{km}}\) oshirdi, asfaltlangan yo‘lda esa tezligini \({\rm{soati}}\)ga \(5\;{\rm{km}}\) kamaytirdi va yo‘lga \(9\;{\rm{soat}}\) vaqt sarfladi. Shaharlar orasidagi masofani \(\left( {{\rm{km}}} \right)\) toping. \(330\) \(300\) \(360\) \(315\) Quyidagi rasmda \(y = {x^2}\) funksiya grafigi va \(ABCD\) teng yonli trapetsiya tasvirlangan:Agar trapetsiyani o‘tkir burchagining tangensi \(8\) ga, diagonali \(8\sqrt 5 \) teng bo‘lsa, trapetsiyaning yuzini toping. Bunda trapetsiya asoslari \(Ox\) o‘qiga parallel. \(256\) \(120\) \(64\) \(128\) \(\frac{{\frac{4}{7} + \frac{4}{8} + \frac{4}{9}}}{{\frac{2}{{21}} + \frac{2}{{24}} + \frac{2}{{27}}}}\) ni hisoblang. \(6\) \(10\) \(8\) \(9\) Quyidagi rasmda asosi radiusi \(4\) \({\rm{sm}}\) va balandligi \(4\pi \) \({\rm{sm}}\) bo‘lgan karton silindrning sirtidagi \(A\) va \(C\;\)nuqtalarni qalam bilan tutashtirilgani tasvirlangan:\(BC = 3DC\) bo‘lsa, \(AC\) chiziqning minimal uzunligi necha \(\left( {{\rm{sm}}} \right)\) bo‘ladi? \(5\pi \) \(7\pi \) \(6\pi \) \(8\pi \) Dastlabki yuzta sondan tavakkaliga bittasi tanlandi. Tanlangan sonning \(3\) ga ham, \(4\) ga ham karrali, lekin \(5\) ga karrali bo‘lmaslik ehtimoli qanday? \(0,05\) \(0,07\) \(0,08\) \(0,04\) Facebook Twitter VKontakte 0% Перезапустить тест