Report a question

You cannot submit an empty report. Please add some details.

Matematika BMBA 2024 4-variant

Matematika fanidan oliy ta'limga kirish uchun tayyorlanayotganabiturentlar uchun test savollari
4-variant
Savollar soni: 30 ta

Barcha ma'lumotlarni to'g'ri kiriting.

\({2^n} - {2^{2 - n}} = 3\) bo‘lsa, \(n\) ning qiymatini toping.

Aniq integralni hisoblang:
\(\mathop \smallint \limits_1^e \ln \left( {{x^2}} \right)dx\)

Bir xil o‘lchamdagi shakllar ustida turgan jirafaning bo‘yi uzunligini \(\left( {{\rm{cm}}} \right)\) toping.

Sfera sirtidagi uchta nuqta orasidagi masofa \(26\;{\rm{sm}},\;\;24\;{\rm{sm}}\) va \(10\;{\rm{sm}}\) ga, sfera sirtining yuzi \(900\pi \;{\rm{s}}{{\rm{m}}^2}\) ga teng. Shu uchta nuqta orqali o‘tgan tekislikdan sferaning markazigacha bo‘lgan masofani \(\left( {{\rm{sm}}} \right)\) toping.

\(A = \frac{{\sin 31^\circ }}{{\cos 59^\circ }} + \frac{{\tan 47^\circ }}{{\cot 43^\circ }}\) bo’lsa, \(\sin \frac{\pi }{{3A}} + \tan \frac{\pi }{{2A}}\) ning qiymatini toping.

\(f\left( x \right) = 2{x^2} - 3x + c\) funksiya \(A\left( {1;2} \right)\) nuqtadan o‘tsa, \(c\) ning qiymatini toping.

To‘g‘ri burchakli uchburchakning katetlari \({\log _2}27\;{\rm{sm}}\) va \({\log _3}64\;{\rm{sm}}\) bo‘lsa, uning yuzini \(\left( {{\rm{s}}{{\rm{m}}^2}} \right)\) toping.

Aniq integralni hisoblang:
\(\mathop \smallint \nolimits_e^{{e^2}} \frac{{dx}}{{x \cdot {\rm{l}}{{\rm{n}}^2}x}}\)

\({\sin ^2}x;\;\;\cos \left( {90^\circ - x} \right);\;\;{\cos ^2}x\) lar ko‘rsatilgan tartibda arifmetik progressiyani tashkil qilsa, \(\frac{3}{2}\) soni bu progressiyani nechanchi nomerli hadi bo’ladi?

\({2024^{{0^{2024}}}} - {\left( {{{\left( {{2^0}} \right)}^2}} \right)^4}\) ni hisoblang.

\(m = 400 \cdot \left( {{7^4} + 1} \right) \cdot \left( {{7^8} + 1} \right)\) bo‘lsa, \(\sqrt[8]{{6m + 1}}\) ning qiymatini toping.

Qavariq oltiburchakning birinchi, ikkinchi va uchinchi tomonlari uzunliklari o‘zaro teng, to‘rtinchi tomoni birinchisidan \(2\) marta katta, beshinchi tomoni to‘rtinchisidan \(3\) \({\rm{sm}}\) kichik, oltinchi tomoni esa ikkinchisidan \(1{\rm{\;sm}}\) ga katta. Aga oltiburchakning perimetri \(30\;{\rm{sm}}\) bo‘lsa, uning eng katta tomoni uzunligi \(\left( {{\rm{sm}}} \right)\) topilsin.

\(28\) ta olmadan birini ko‘pi bilan necha xil usulda olish mumkin?

Quyidagi rasmda Sardor Salohiddinovning o‘quv xonasi tasvirlangan:

Xonaning eni \(5\;{\rm{m}}\) ga teng va uning \(4\) ta yon devori bo‘yalgan. Agar xonaning derazalari kvadrat shaklida va ularning soni \(4\) ta bo‘lsa, necha \(\left( {{{\rm{m}}^2}} \right)\) yuza bo‘yalgan?

\({2^{2013}}\) sonining oxirgi ikkita raqamini toping.

\(f\left( x \right) = 4\sin \left( {x + \frac{\pi }{2}} \right) + 6\cos \left( {\frac{x}{5} + \frac{\pi }{3}} \right)\) funksiyaning eng kichik musbat davrini toping.

Quyidagi rasmda \(\# \) amalini ishlash tartibi ko’rsatilgan:

Rasmda berilgan ma’lumotlardan foydalanib, \(\# 12 + 15\# - 11\# + \# 9\) ning qiymatini toping.

\(f\left( x \right) = {\rm{tg}}x\) funksiyaning \({x_0} = \frac{\pi }{3}\) nuqtadagi hosilasini toping.

Quyidagi rasmda kvadrat va muntazam beshburchaklar tasvirlangan:

Agar shaklning perimetri \(96\;{\rm{sm}}\) bo‘lsa, kvadratning yuzini \(\left( {{\rm{s}}{{\rm{m}}^2}} \right)\) toping.

\(ABCD\) trapetsiyaning asoslari \(BC = 18\;{\rm{sm}}\) va \(AD = 50\;{\rm{sm}}\) ga teng. Agar \(\angle BAC = \angle ADC\) bo‘lsa, \(AC\) diagonalning uzunligini \(\left( {{\rm{sm}}} \right)\) toping.

Agar \(a = {\rm{ct}}{{\rm{g}}^{2024}}\left( {\lg \left( {2 + \sqrt 3 } \right)} \right)\) bo‘lsa, \({\rm{ct}}{{\rm{g}}^{2024}}\left( {\lg \left( {2 - \sqrt 3 } \right)} \right)\) ni \(a\) orqali ifodalang.

\(2,\;\;3,\;\;4,\;\;5,\;\;6,\;\;7,\;\;8\) raqamlaridan nechta turli raqamli \(3\) xonali son tuzish mumkin?

\({\log _{1 - x}}\left( {3 - x} \right) = {\log _{3 - x}}\left( {1 - x} \right)\) tenglamaning nechta haqiqiy ildizi bor?

Quyidagi rasmda teng yonli \(ABC\) uchburchak tasvirlangan:

\(\angle DCB - \angle DBC = 40^\circ \) bo‘lsa, \(\angle BAC\) ning qiymatini toping.

\(P\left( x \right) = 5{x^{\frac{{12}}{n}}} + {x^{\frac{4}{n}}} + 3\) ifoda ko’phad bo’ladigan \(n\) ning barcha qiymatlari yig’indisini toping.

Quyidagi rasmda \(2\) ta chelak va \(1\) ta bak tasvirlangan:

Agar bakni to‘ldirish uchun ikkita chelak bilan jami \(20\) marta suv quyilgan bo‘lsa, birinchi chelak bilan necha marta suv quyilgan?

G‘ishtning og‘irligi \(1,4\) kg va yana yarimta g‘ishtni og‘irligiga bo‘lsa, g‘ishtning og‘irligini \(\left( {{\rm{kg}}} \right)\) toping.

\({2^{18}} + 1\) soni quyidagilardan qaysi biriga qoldiqsiz bo‘linadi?

\({\left( {xy + x + y + 1} \right)^{20}}\) ifoda ko‘phad ko‘rinishida keltirilganda nechta haddan iborat bo‘ladi?

\({x^2} + ax + 1 = 0\;\)va \({x^2} + x + a = 0\) tenglamalar bitta umumiy ildizga ega bo‘lsa,\(\;a\) ning qiymatini toping.

0%