Report a question What's wrong with this question? You cannot submit an empty report. Please add some details. 123456789101112131415161718192021222324252627282930 Matematika BMBA 2024 4-variant Matematika fanidan oliy ta'limga kirish uchun tayyorlanayotganabiturentlar uchun test savollari 4-variant Savollar soni: 30 ta Barcha ma'lumotlarni to'g'ri kiriting. Aniq integralni hisoblang: \(\mathop \smallint \nolimits_e^{{e^2}} \frac{{dx}}{{x \cdot {\rm{l}}{{\rm{n}}^2}x}}\) \(3\) \(0,5\) \(0\) \(2\) \({2^{2013}}\) sonining oxirgi ikkita raqamini toping. (12) (32) (92) (72) Quyidagi rasmda \(\# \) amalini ishlash tartibi ko’rsatilgan:Rasmda berilgan ma’lumotlardan foydalanib, \(\# 12 + 15\# - 11\# + \# 9\) ning qiymatini toping. \(47\) \(25\) \( - 1\) \(23\) G‘ishtning og‘irligi \(1,4\) kg va yana yarimta g‘ishtni og‘irligiga bo‘lsa, g‘ishtning og‘irligini \(\left( {{\rm{kg}}} \right)\) toping. \(12\) \(2,4\) \(2,8\) \(2,1\) \({2^n} - {2^{2 - n}} = 3\) bo‘lsa, \(n\) ning qiymatini toping. \(n = \frac{1}{2}\) \(n = - 1\) \(n = 0\) \(n = 2\) Bir xil o‘lchamdagi shakllar ustida turgan jirafaning bo‘yi uzunligini \(\left( {{\rm{cm}}} \right)\) toping. \(425\;\) \(415\;\) \(420\;\) \(430\;\) \(f\left( x \right) = 2{x^2} - 3x + c\) funksiya \(A\left( {1;2} \right)\) nuqtadan o‘tsa, \(c\) ning qiymatini toping. \(1\) \(2\) \(3\) \(4\) \({\sin ^2}x;\;\;\cos \left( {90^\circ - x} \right);\;\;{\cos ^2}x\) lar ko‘rsatilgan tartibda arifmetik progressiyani tashkil qilsa, \(\frac{3}{2}\) soni bu progressiyani nechanchi nomerli hadi bo’ladi? \(10\) \(5\) \(7\) \(6\) \({2^{18}} + 1\) soni quyidagilardan qaysi biriga qoldiqsiz bo‘linadi? \(65\) \(2\) \(17\) \(3\) \(A = \frac{{\sin 31^\circ }}{{\cos 59^\circ }} + \frac{{\tan 47^\circ }}{{\cot 43^\circ }}\) bo’lsa, \(\sin \frac{\pi }{{3A}} + \tan \frac{\pi }{{2A}}\) ning qiymatini toping. \(1,5\) \(1,8\) \( - 1\) \(5\) \({\log _{1 - x}}\left( {3 - x} \right) = {\log _{3 - x}}\left( {1 - x} \right)\) tenglamaning nechta haqiqiy ildizi bor? \(1\) \(2\) \(3\) \(0\) Quyidagi rasmda \(2\) ta chelak va \(1\) ta bak tasvirlangan:Agar bakni to‘ldirish uchun ikkita chelak bilan jami \(20\) marta suv quyilgan bo‘lsa, birinchi chelak bilan necha marta suv quyilgan? \(15\) \(5\) \(10\) 0 \(ABCD\) trapetsiyaning asoslari \(BC = 18\;{\rm{sm}}\) va \(AD = 50\;{\rm{sm}}\) ga teng. Agar \(\angle BAC = \angle ADC\) bo‘lsa, \(AC\) diagonalning uzunligini \(\left( {{\rm{sm}}} \right)\) toping. \(30\) \(34\) \(32\) \(28\) \(2,\;\;3,\;\;4,\;\;5,\;\;6,\;\;7,\;\;8\) raqamlaridan nechta turli raqamli \(3\) xonali son tuzish mumkin? \(140\) \(210\) \(105\) \(84\) \(28\) ta olmadan birini ko‘pi bilan necha xil usulda olish mumkin? \(28\) \(24\) \(27\) \(14\) Sfera sirtidagi uchta nuqta orasidagi masofa \(26\;{\rm{sm}},\;\;24\;{\rm{sm}}\) va \(10\;{\rm{sm}}\) ga, sfera sirtining yuzi \(900\pi \;{\rm{s}}{{\rm{m}}^2}\) ga teng. Shu uchta nuqta orqali o‘tgan tekislikdan sferaning markazigacha bo‘lgan masofani \(\left( {{\rm{sm}}} \right)\) toping. \(56\) \(\sqrt {14} \) \(4\sqrt {14} \) \(2\sqrt {14} \) \({x^2} + ax + 1 = 0\;\)va \({x^2} + x + a = 0\) tenglamalar bitta umumiy ildizga ega bo‘lsa,\(\;a\) ning qiymatini toping. \(12\) \(2\) \( - 2\) \(1\) Quyidagi rasmda kvadrat va muntazam beshburchaklar tasvirlangan:Agar shaklning perimetri \(96\;{\rm{sm}}\) bo‘lsa, kvadratning yuzini \(\left( {{\rm{s}}{{\rm{m}}^2}} \right)\) toping. \(16\) \(25\) \(49\) \(36\) To‘g‘ri burchakli uchburchakning katetlari \({\log _2}27\;{\rm{sm}}\) va \({\log _3}64\;{\rm{sm}}\) bo‘lsa, uning yuzini \(\left( {{\rm{s}}{{\rm{m}}^2}} \right)\) toping. \(9\) \(6\) \(12\) \(18\) \(f\left( x \right) = {\rm{tg}}x\) funksiyaning \({x_0} = \frac{\pi }{3}\) nuqtadagi hosilasini toping. \(4\) \(1\) \(\frac{2}{3}\) \(\sqrt 3 \) \({2024^{{0^{2024}}}} - {\left( {{{\left( {{2^0}} \right)}^2}} \right)^4}\) ni hisoblang. \(1\) \(2\) \(0\) \(16\) Quyidagi rasmda teng yonli \(ABC\) uchburchak tasvirlangan:\(\angle DCB - \angle DBC = 40^\circ \) bo‘lsa, \(\angle BAC\) ning qiymatini toping. \(65^\circ \) \(50^\circ \) \(40^\circ \) \(55^\circ \) \(P\left( x \right) = 5{x^{\frac{{12}}{n}}} + {x^{\frac{4}{n}}} + 3\) ifoda ko’phad bo’ladigan \(n\) ning barcha qiymatlari yig’indisini toping. \(5\) \(7\) \(6\) \(8\) \(f\left( x \right) = 4\sin \left( {x + \frac{\pi }{2}} \right) + 6\cos \left( {\frac{x}{5} + \frac{\pi }{3}} \right)\) funksiyaning eng kichik musbat davrini toping. \(14\pi \) \(10\pi \) \(5\pi \) \(12\pi \) Aniq integralni hisoblang: \(\mathop \smallint \limits_1^e \ln \left( {{x^2}} \right)dx\) \(2e - 1\) \(2{e^2} - 1\) \(1\) \(2\) \({\left( {xy + x + y + 1} \right)^{20}}\) ifoda ko‘phad ko‘rinishida keltirilganda nechta haddan iborat bo‘ladi? \(420\) \(400\) \(441\) \(21\) \(m = 400 \cdot \left( {{7^4} + 1} \right) \cdot \left( {{7^8} + 1} \right)\) bo‘lsa, \(\sqrt[8]{{6m + 1}}\) ning qiymatini toping. \(\sqrt[8]{7}\) \(7\) \(49\) \(\sqrt[4]{7}\) Qavariq oltiburchakning birinchi, ikkinchi va uchinchi tomonlari uzunliklari o‘zaro teng, to‘rtinchi tomoni birinchisidan \(2\) marta katta, beshinchi tomoni to‘rtinchisidan \(3\) \({\rm{sm}}\) kichik, oltinchi tomoni esa ikkinchisidan \(1{\rm{\;sm}}\) ga katta. Aga oltiburchakning perimetri \(30\;{\rm{sm}}\) bo‘lsa, uning eng katta tomoni uzunligi \(\left( {{\rm{sm}}} \right)\) topilsin. \(5\) \(8\) \(4\) \(10\) Agar \(a = {\rm{ct}}{{\rm{g}}^{2024}}\left( {\lg \left( {2 + \sqrt 3 } \right)} \right)\) bo‘lsa, \({\rm{ct}}{{\rm{g}}^{2024}}\left( {\lg \left( {2 - \sqrt 3 } \right)} \right)\) ni \(a\) orqali ifodalang. \( - \frac{1}{a}\) \(\frac{1}{a}\) \( - a\) \(a\) Quyidagi rasmda Sardor Salohiddinovning o‘quv xonasi tasvirlangan:Xonaning eni \(5\;{\rm{m}}\) ga teng va uning \(4\) ta yon devori bo‘yalgan. Agar xonaning derazalari kvadrat shaklida va ularning soni \(4\) ta bo‘lsa, necha \(\left( {{{\rm{m}}^2}} \right)\) yuza bo‘yalgan? \(220\) \(238\) \(222\) \(236\) Facebook Twitter VKontakte 0% Перезапустить тест