Report a question

You cannot submit an empty report. Please add some details.

matematika fanidan test savollari 5-variant

Abiturentlar uchun matematika fanidan online test savollari.

5-variant

 

Barcha ma'lumotlarni to'g'ri kiriting.

\(ABCD\) parallelogrammning tomonlari \(AB = 25\;{\rm{sm}}\) va \(BC = 34\;{\rm{sm}}\) ga teng. \(DC\) tomonga \(BH\) balandlik tushirilgan hamda \(BC\) tomondan \(M\) va \(AD\) tomondan \(N\) nuqta olingan. \(MN\) kesma \(AD\) tomonga perpendikulyar va \(BH\) ni \(K\) nuqtada kesib o‘tadi. Agar \(MN = \frac{{375}}{{11}}\;{\rm{sm}}\) va \(BK = KH\) bo‘lsa, \(AK\) kesma uzunligini \(\left( {{\rm{sm}}} \right)\) toping.

\({2222^{5555}} + {5555^{2222}}\) sonini \(7\) ga bo‘lgandagi qoldiqni toping.

\(64 \cdot {9^x} - 84 \cdot {12^x} + 27 \cdot {16^x} = 0\) tenglamaning haqiqiy ildizlari ko‘paytmasini toping.

\(\vec a\left( {3;\;7} \right)\) va \(\vec b\left( {8;9} \right)\) bo‘lsa, \(1,2\vec a - 0,7\vec b\) vektorning uzunligini toping.

\(\sqrt {6x - 57} = 9\) tenglama nechta haqiqiy ildizga ega?

\(\frac{1}{x} + \frac{1}{y} = \frac{3}{2}\) va \({2^x} = {3^y}\) bo‘lsa, \({8^x}\) ning qiymatini toping.

\(x \ne 10\) va \(f\left( x \right) = \sqrt[3]{{x\left( {20 - x} \right)}}\) bo‘lsa, \(\frac{{f\left( {10 - x} \right)}}{{f\left( {10 + x} \right)}}\) ning qiymatini toping.

\(f\left( x \right) = {\left( {5{x^3} - 1} \right)^{2017}} \cdot {\left( {2016{x^7} + 1} \right)^5} + {x^{37}} + 14\) ko’phadning ozod hadini toping.

Slindrning asosi tenglamasi \({x^2} + {\left( {y - 2} \right)^2} = 25\) bo‘lgan aylanadan iborat. Agar silindrning balandligi \(6\;{\rm{sm}}\) ga teng bo‘lsa, uning hajmi necha \(\pi \;{\rm{sm}}\) ga teng bo‘ladi?

Quyidagi rasmda \(f\left( x \right) = {a^x}\) funksiya grafigi tasvirlangan:

Rasmda berilgan ma’lumotlardan foydalanib, \(f\left( 4 \right)\) ning qiymatini toping.

\(x + \sqrt x = 3\) bo’lsa, \(\frac{{3 + x\sqrt x }}{{\sqrt x }}\) ning qiymatini toping.

\(f\left( {{\rm{sin}}x} \right) + f\left( {{\rm{cos}}x} \right) = 3\) bo‘lsa, \(f\left( x \right)\) ni toping.

\(\left( {\begin{array}{*{20}{c}}{EKUB\left( {x;y} \right) = 45}\\{\frac{x}{y} = \frac{{11}}{7}\;\;\;\;}\end{array}} \right.\) tenglamalar sistemasini yeching.

Quyidagi rasmda ko‘rsatilgan ma’lumotlardan foydalanib, \(x\) ning qiymatini toping.

\(\frac{1}{{x\left( {x + 1} \right)}} + \frac{1}{{\left( {x + 1} \right)\left( {x + 2} \right)}} + \frac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}} + \frac{1}{{\left( {x + 3} \right)\left( {x + 4} \right)}} + \frac{1}{{\left( {x + 4} \right)\left( {x + 5} \right)}}{\rm{\;}}\)ni soddalashtiring.\({\rm{\;}}\)

\(1 \cdot 2 \cdot 3 \cdot \ldots \cdot 54 \cdot 55\) ko‘paytma nechta nol bilan tugaydi?

\(2x + 2y\) ko‘phadni ko‘paytuvchilarga ajrating.

\(3{a^2} - 4ab + {b^2} = 0\) bo‘lsa, \(a\) ni \(b\) orqali ifodalang.

Quyidagi rasmda markazi koordinatalar boshida bo‘lgan aylana tasvirlangan:

\(K\) va \(L\) nuqtalarning absissalari mos ravishda \(\frac{1}{{\sqrt 5 }}\) va \(\frac{3}{{\sqrt {10} }}\) ga teng bo‘lsa, \(\alpha \) ni toping.

\(y = 8x + 19\) funksiyani \(\vec m\left( {6;3} \right)\) vektor bo‘yicha parallel ko‘chirsak, qanday funksiya hosil bo‘ladi?

Formula \(3\) ta kitob ichidan qidirilyapti. Formulaning birinchi kitobdan topilish ehtimoli \(0,6\) ga, ikkichi kitobdan topilish ehtimoli \(0,7\) ga, uchinchi kitobdan topilish ehtimoli \(0,8\) ga teng bo‘lsa, formulaning faqat \(2\) ta kitobdan topilish ehtimolini toping.

\(\overline {ab} + \overline {bc} + \overline {ca} = \overline {abc} \) bo‘lsa, \(a \cdot b \cdot c\) ning qiymatini toping.

\(f\left( x \right) = {3^x} \cdot {\rm{tg}}x\) bo’lsa, \(f'\left( 0 \right)\) ning qiymatini toping.

\(\frac{{{7^x} + 7}}{{{7^x} - 7}} + \frac{{{7^x} - 7}}{{{7^x} + 7}} \ge \frac{{4 \cdot {7^x} + 96}}{{{{49}^x} - 49}}\) tengsizlikni yeching.

\({6^{46}}:23 = A\;\left( q \right)\) bo‘lsa, \(q\) ni toping.

\(5\sqrt 2 \sin \frac{{3\pi }}{8}\cos \frac{{3\pi }}{8}\) ning qiymatini toping.

Quyidagi rasmda tasvirlangan doiralardan eng kattasining radiusi \(4\;{\rm{sm}}\) ga teng.

Qolgan har bir doiraning radiusi o‘zidan oldingi doira radiusining \(\frac{3}{4}\) qismini tashkil qiladi. Bunga ko‘ra barcha doiralarning yuzlari yig‘indisini \(\left( {{\rm{s}}{{\rm{m}}^2}} \right)\) toping.

Quyidagi chizmada olcha daraxtining shoxlari ko‘rsatilgan:

Agar \(AB//ED\) bo‘lsa, \(\angle BCD\) ni toping.

\(f\left( x \right) = {\rm{lo}}{{\rm{g}}_2}\left( {x + \sqrt {1 + {x^2}} } \right)\) funksiya uchun quyidagilardan qaysi biri to‘g‘ri?

Quyidagi rasmda \(y = f\left( x \right)\) funksiya grafigi tasvirlangan:

\(\mathop \smallint \nolimits_{ - 4}^{ - 3} f\left( x \right)dx = 2\;\)
va\(\;{S_3} - {S_2} = 2\) bo‘lsa,
\(\mathop \smallint \nolimits_{ - 2}^{ - 4} f\left( x \right)dx\)
ning qiymatini toping.

0%