12345678910111213141516171819202122232425262728293031323334353637383940 9-sinf matematika fanidan online test 9-sinf o'quvchilari uchun 1-bosqich fan olimpiadasiga tayyorlanish uchun mo'ljallangan online test. Test savollar soni: 40 ta Bajarish uchun ajratilgan vaqt: 90 daqiqa Sizga omad yor bo'lsin! Barcha ma'lumotlarni to'g'ri kiriting. Kirish imtixonlari topshirilayotgan auditoriyadagi abituriyentlarning 40% i qizlar, qolganlari esa o’g’il bolalar. Auditoriyada eng kami bilan qancha abituriyent bo’lishi mumkin? 20 5 50 10 1 dan 732 gacha bo’lgan natural sonlar ko’paytmasi nechta no’l bilan tugaydi? 124 146 181 179 \[P\left( x \right)\] ko‘phadni \[x - a\] ga bo‘lgandagi qoldiqni toping. \[P\left( x \right)\] 0 \[P\left( {x - a} \right)\] \[P\left( a \right)\] Tenglamaning ildizlar yig’indisini toping: \((x - 1) \cdot (x - 2) \cdot (x - 3) \cdot ... \cdot (x - 99) \cdot (x - 100) = 0\) 2500 5050 5000 3880 \(ax = b\)englamaning cheksiz ko’p ildizi mavjud. bx=a tenglamaning nechta ildizi bor? ikkita cheksiz ko’p bitta ildizi yo’q Natural sonlar to’plamini shunday guruxlarga ajratildiki, bunda har bir guruh natural sonning kvadrati bilan tugaydi {1}, {2,3,4}, {5,6,7,8,9}, .... 17- guruhga kiruvchi sonlar yig’indisini toping. 8008 9009 289 9800 Hisoblang: \(\frac{{1\frac{2}{3} \cdot 0,0132 \cdot \frac{3}{5} + 2\frac{1}{2} \cdot 0,0148 \cdot \frac{3}{7}}}{{0,4 \cdot 0,00993 + 0,00007}}\) 0,7 700 7 70 \(f(x) = \frac{{3{x^2} - 13x + 16}}{2}\) va \(\begin{array}{l}{f^1}(x) = f(x)\\{f^2}(x) = f(f(x))\\{f^3}(x) = f(f(f(x)))\end{array}\) bo’lsa, \({f^{100}}(1)\) ni hisoblang. \({2^{100}}\) \({3^{100}}\) 3 \({3^{99}}\) . Rombning diagonallari 6 va 8 ga teng bo‘lsa, uning tomonini toping. 6 \[3\sqrt 2 \] \[7\sqrt 2 \] 5 Funksiyaning aniqlanish sohasiga nechta butun son tegishli bo’ladi? \(f(x) = \frac{{\sqrt {x - 4} \cdot \sqrt[3]{{x + 5}} \cdot \sqrt[4]{{36 - {x^2}}}}}{{\sqrt[5]{{{x^2} - 11x + 30}}}}\) 1 butun sonlar yo’q 3 2 x sonining necha foizini x ning 30% ining 30% i tashkil qiladi ? 60 90 9 30 . Parallellogrammning 5 ga teng bo‘lgan diagonali uning 12 ga teng bo‘lgan tomoniga perpendikulyar. Parallelogrammning perimetrini toping. 44 48 50 34 . Tenglamani yeching: \[\left| {x + 6} \right| = \left| {x + 10} \right|\] -6 6 4 -8 Ikki natural sonning eng kichik umumiy karralisi 240 ga teng, shu sonlarning eng katta umumiy bo'livchisi esa 16 ga teng. Bu sonlarning ko’paytmasini toping. 15 3840 224 256 Agar \[\left( {3 - a} \right)\left( {3 - b} \right)\left( {3 - c} \right) = \left( {3 + a} \right)\left( {3 + b} \right)\left( {3 + c} \right)\] bo‘lsa, \[{\left( {ab} \right)^{ - 1}} + {\left( {bc} \right)^{ - 1}} + {\left( {ac} \right)^{ - 1}}\] ni hisoblang. (Bunda \[abc \ne 0\]). \[ - \frac{1}{3}\] \[ - \frac{1}{9}\] \[\frac{1}{9}\] \[\frac{1}{{27}}\] Ikki to’g’ri chiziq kesishganda 4 ta burchak hosil bo’ldi. Bir burchakning kattaligi ikkinchisidan \(100^\circ \) ga katta. Ikkita eng katta burchakning yig’indisini toping. 300 80 280 140 . Tenglamaning natural sonlardagi yechimida \[z\] ni toping: \[x + \frac{1}{{y + \frac{1}{z}}} = \frac{{68}}{{21}}\] 3 4 5 2 To‘g‘ri burchakli uchburchakka ichki chizilgan aylana urinish nuqtasida gipotenuzani 5 va 12 ga teng kesmalarga ajratadi. Uchburchak yuzini toping. 65 60 35 48 \({({x^7} \cdot {x^6} \cdot {x^6} \cdot {x^8})^9}\) ifodani \({({x^2})^7} \cdot {({x^2} \cdot {x^{10}})^6}\) ifodaga bo’lganda bo’linma \({x^A}\) chiqdi. A ni toping. 12 157 213 231 Agar \[k > 0\] va \[b = 0\] bo‘lsa, u holda \[y = kx + b\] to‘g‘ri chiziq grafigi qaysi choraklardan o‘tadi? I, III II, IV I, II, III I, II \[2010\frac{{2009}}{{2010}} \cdot 2011\frac{{2009}}{{2010}} - 2009\frac{{2009}}{{2010}} \cdot 2012\frac{{2009}}{{2010}}\] ni hisoblang. 3 \[2\frac{{2009}}{{2010}}\] \[ - 2\frac{{2009}}{{2010}}\] 2 \[\frac{x}{2} = \frac{y}{3} = \frac{z}{5}\] bo‘lsa, \[\frac{{xyz}}{{{x^3} + {y^3} + {z^3}}}\] ifodaning qiymatini toping. \[1\frac{{13}}{{16}}\] \[\frac{3}{{16}}\] \[\frac{2}{3}\] \[1\frac{1}{8}\] \(\begin{array}{l}f(x) = ax + b\\g(x) = cx + d\end{array}\) Agar \(\frac{b}{d} = 5\)va \(f\left( {g\left( x \right)} \right) = g\left( {f\left( x \right)} \right)\)yniyat bo’lsa, \(\frac{{c - 1}}{{a - 1}}\)i toping. \(\frac{1}{5}\) aniqlan-magan 0 5 Agar ikki xonali sonning o’ng tomoniga 6 raqami yozib qo’yilsa, berilgan sonning yarmi bilan 500 ning yig’indisiga teng son hosil bo’ladi. Bu qanday ikki xonali son? 44 48 46 52 . Asoslari 18 va 12 ga teng bo‘lgan teng yonli trapetsiyaning diagonallari o‘zaro perpendikulyar. Trapetsiyaning yuzini toping. 150 125 225 400 Tarkibida 30% tuz bo’lgan 16 kg eritmani tarkibida 50% tuz bo’lgan eritma bilan aralashtirildi. Hosil bo’lgan eritmaning tarkibida 42% tuz bo’lsa, ikkinchi eritmadan necha kg olingan? 24 22 30 50 . Tarkibida 85% suv bo‘lgan 0,5 t sellyuloza qorishmasida 75% suv bo‘lgan qorishma olish uchun necha kg suvni bug‘lantirish kerak? 400 300 200 100 Teng yonli trapetsiyaning diagonali uni ikkita teng yonli uchburchakka ajratadi. Trapetsiyaning burchaklarini toping. 820, 980 1000, 800 1350, 450 720, 1080 . Yuzi 96 sm2, balandliklari 6 sm va 8 sm bo‘lgan parallelogrammning perimetrini toping. 56 sm 40 sm 50 sm 20 sm Abituriyentga 36 ta masala berildi. To‘g‘ri yechilgan har biriga 3 ball beriladi. Noto‘g‘risiga 2 ball chegiriladi. 88 ball to‘plashi uchun o‘quvchi nechta masalani to‘g‘ri yechishi kerak? 32 34 38 30 Motorli qayiq bir to’xtash joyidan ikkinchisigacha 3 soatda suzib boradi, sol esa shu masofani 12 soatda suzib o’tadi. Shu masofani motorli qayiq oqimga qarshi necha soatda suzib o’tadi ? 6 8 15 9 Funksiyaning eng kichik qiymatini toping: \(f(x) = 2{x^6} - 7{x^3} + 9\) \( - 3\frac{1}{4}\) \(3\frac{1}{4}\) \(4\frac{1}{2}\) \(2\frac{7}{8}\) Ifodaning eng kichik qiymatini toping: \(f(x,y) = {x^2} - 6x + {y^2} - 8y + 36\) -10 24 11 Hovuzga uchta quvur o‘tkazilgan. Birinchisi hovuzni 12 soatda, ikkinchisi 8 soatda to‘ldiradi. Uchinchisi hovuzni 1 sutkada bo‘shatadi. Agar uchala quvur birgalikda ochib qo‘yilsa, bo‘sh hovuzning yarmi qancha vaqt(soat)da to‘ladi? 3 2 2,5 1,5 Agar \(\left\{ {\begin{array}{*{20}{c}}{4x + 6y = 98}\\{6x + 4y = 92}\end{array}} \right.\)bo’lsa, x+y ni toping. 20 19 21 \(18\frac{3}{4}\) . Ifodaning eng kichik qiymatini toping: \[{p^2} - 16pq + 64{q^2} - 4\] -12 -4 4 12 Hisoblang: \(\frac{{{2^7} \cdot {4^{10}} \cdot {8^8} \cdot {{16}^8}}}{{{{32}^{16}}}}\) 4 2 1 8 \[\left\{ \begin{array}{l}\frac{{2x + y + \frac{z}{2}}}{z} = 3\\\frac{{x + \frac{{3y}}{4} + \frac{z}{2}}}{y} = 3\end{array} \right.\] sistemadan \[\frac{z}{y}\] ni toping. \[\frac{7}{{11}}\] \[\frac{3}{7}\] \[\frac{7}{3}\] \[\frac{{11}}{7}\] Ifodaning oxirgi raqamini aniqlang: \({3^{279}} \cdot {7^{298}} - {3^{178}} \cdot {7^{197}}\) 3 0 1 6 f(x) funksiya aniqlanish sohasiga tegishli ixtiyoriy x uchun \(\frac{{f( - x) \cdot f(x)}}{{{f^2}(x)}} = - 1\) bo’ladi. \(f(5) = 13\) ekani ma’lum. i hisoblang. \(65\) \(13\) \( - 13\) \(5\) Facebook Twitter VKontakte 0% Restart quiz