Processing math: 100%

Report a question

You cannot submit an empty report. Please add some details.

Matematika fanidan test savollari 1-variant

Oliy ta'lim uchun test sinovlariga tayyorlanayotgan abiturentlar uchun test savollari
Matematika fanidan 30 ta test
Bajarish uchun 90 minut

Barcha ma'lumotlarni to'g'ri kiriting.

f\left( x \right) = y va {x^2} - 2x = {e^{x - y}} bo‘lsa, f'\left( 4 \right) ning qiymatini toping.

4{x^2} + \frac{1}{{{x^2} - 4}} = 16 - \frac{1}{{4 - {x^2}}} tenglamani yeching.

n - \;hadi {a_n} bo‘lgan arifmetik progressiya uchun {a_n} = 2 + {a_{n - 1}} tenglik o‘rinli bo‘lib, dastlabki o‘nta hadining yig‘indisi 115 ga teng bo‘lsa, arifmetik progressiyaning birinchi hadini toping.

\frac{{1 + 3 + 5 + \ldots + 43}}{{2 + 4 + 6 + \ldots + 42}} ni hisoblang.

Ishlab chiqarish samaradorligi birinchi yili 15\% ga, ikkinchi yili 16\% ga ortdi. Shu ikki yil ichida samaradorlik necha \% ga ortgan?

\;\left( {x - 5} \right) \cdot \left( {\frac{1}{5}x + 4} \right) = 0 bo‘lsa, \frac{1}{5}x + 4 qanday qiymatlar qabul qiladi?

f\left( x \right) = \left| {\left| {x - 2} \right| - 2} \right| funksiya grafigini chizing.

Quyidagi rasmda qirrasining uzunligi 6\;{\rm{sm}} bo‘lgan muntazam tetraedr tasvirlangan:

Agar BD = FE = 4\;{\rm{sm}};{\rm{\;\;}}DC = AF = 2\;{\rm{sm}} va O nuqta AC qirrada ekanligi ma’lum bo‘lsa, DO + OF yig‘indining eng kichik qiymatini \left( {{\rm{sm}}} \right) toping.

n + 7 soni juft son bo‘lsa, quyidagilardan qaysi biri toq son bo‘ladi?

Muntazam oltiburchakka tashqi chizilgan aylananing radiusi 4\sqrt 3 {\rm{sm}}\;ga teng bo‘lsa, uning kichik diagonalini \left( {{\rm{sm}}} \right) toping.

\;\left( {e - \pi } \right)x \ge 7\left( {\pi - e} \right) tengsizlikni yeching.

{9^{{x^2} - 1}} + {3^{{x^2}}} - 4 = 0 tenglamaning butun ildizlari yig‘indisini toping.

{\left( {2{x^2} - \frac{1}{{{x^2}}}} \right)^7} = \ldots + p \cdot {x^6} + \ldots bo‘lsa, p ning qiymatini toping.

Teng yonli ABCD trapetsiyaning ichida P nuqta shunday olinganki, PA = 2;\;\;PB = 3;\;\;PC = 4 va PD = 5 ga teng. Agar AD katta asos bo’lsa, \frac{{BC}}{{AD}} ning qiymatini toping.

f\left( x \right) = f\left( 5 \right) \cdot x - 20 bo‘lsa, f\left( 4 \right) ning qiymatini toping.

f\left( {\frac{{3x - 1}}{{x + 2}}} \right) = \frac{{x + 1}}{{x - 1}} bo‘lsa, f\left( x \right) ni toping.

Quyidagi rasmda ko‘rsatilgan krandan konus ichiga doimiy bir xil suv oqib tushadi.

Agar kran konusni bo‘yalgan qismini 4 minutda to‘ldirsa, butun konusni necha minutda to‘ldiradi?

Quyidagi rasmda tasvirlangan ABC uchburchakning tomonlarida 9 ta nuqta olingan:

Uchlari ko‘rsatilgan nuqtalarda bo‘lgan nechta uchburchak bor?

\;\frac{{10!}}{{7!}} \cdot \left( {\frac{{8!}}{{10!}} + \frac{{3!}}{{5!}}} \right) ni hisoblang.

P\left( x \right) = {\left( {x - 1} \right)^a} \cdot {\left( {x + 2} \right)^b} va P\left( 2 \right) \cdot P\left( 1 \right) = 64 bo‘lsa, a + b ning qiymatini toping.

32;\;\;18 va 24 sonlarining o‘rta geometrigini toping.

Quyidagi rasmda y = f\left( x \right) funksiya grafigi tasvirlangan:

Rasmda berilgan ma’lumotlardan foydalanib, \left( {x - 3} \right) \cdot f\left( x \right) > 0 tengsizlikni qanoatlantiradigan butun sonlar yig‘indisini toping.

Sardor 420 {\rm{m}} masofani 7 {\rm{daqiqa}}da bosib o‘tadi. Sardorning tezligini \left( {{\rm{m}}/{\rm{min}}} \right) toping.

{\left( {\sqrt {6 + \sqrt {35} } } \right)^x} + {\left( {\sqrt {6 - \sqrt {35} } } \right)^x} = 12 tenglamaning butun ildizlari ko‘paytmasini toping.

{\left( {{4^{\frac{{{{\log }_4}7}}{{{{\log }_7}4}}}} - {7^{{{\log }_4}7}} + {3^{{{\log }_9}16}}} \right)^{\frac{1}{2}}} ni hisoblang.

Aniq integralni hisoblang:
\mathop \smallint \nolimits_0^3 \frac{x}{{\sqrt {1 + {x^2}} }}dx + \mathop \smallint \nolimits_0^3 \frac{1}{3}dx

Quyidagi chizmada berilgan ma’lumotlardan foydalanib, x\;ni toping.

\frac{{{{\left( {2\left| x \right| - 3} \right)}^2} - \left| x \right| - 6}}{{4x + 1}} = 0 tenglamaning haqiqiy ildizlari yig‘indisini toping.

\cos 3x - \sqrt 3 \sin 3x < 0 tengsizlikni yeching.

Soddalashtiring: \frac{{{{\left( {a + 1} \right)}^3} + 1}}{{{a^3} - 1}}

0%