Report a question

You cannot submit an empty report. Please add some details.

Matematika fanidan test savollari 1-variant

Oliy ta'lim uchun test sinovlariga tayyorlanayotgan abiturentlar uchun test savollari
Matematika fanidan 30 ta test
Bajarish uchun 90 minut

Barcha ma'lumotlarni to'g'ri kiriting.

Quyidagi rasmda ko‘rsatilgan krandan konus ichiga doimiy bir xil suv oqib tushadi.

Agar kran konusni bo‘yalgan qismini \(4\) minutda to‘ldirsa, butun konusni necha minutda to‘ldiradi?

\(\;\left( {x - 5} \right) \cdot \left( {\frac{1}{5}x + 4} \right) = 0\) bo‘lsa, \(\frac{1}{5}x + 4\) qanday qiymatlar qabul qiladi?

Muntazam oltiburchakka tashqi chizilgan aylananing radiusi \(4\sqrt 3 \) \({\rm{sm}}\;\)ga teng bo‘lsa, uning kichik diagonalini \(\left( {{\rm{sm}}} \right)\) toping.

Quyidagi rasmda \(y = f\left( x \right)\) funksiya grafigi tasvirlangan:

Rasmda berilgan ma’lumotlardan foydalanib, \(\left( {x - 3} \right) \cdot f\left( x \right) > 0\) tengsizlikni qanoatlantiradigan butun sonlar yig‘indisini toping.

\({9^{{x^2} - 1}} + {3^{{x^2}}} - 4 = 0\) tenglamaning butun ildizlari yig‘indisini toping.

\({\left( {2{x^2} - \frac{1}{{{x^2}}}} \right)^7} = \ldots + p \cdot {x^6} + \ldots \) bo‘lsa, \(p\) ning qiymatini toping.

\({\left( {{4^{\frac{{{{\log }_4}7}}{{{{\log }_7}4}}}} - {7^{{{\log }_4}7}} + {3^{{{\log }_9}16}}} \right)^{\frac{1}{2}}}\) ni hisoblang.

Quyidagi rasmda tasvirlangan \(ABC\) uchburchakning tomonlarida \(9\) ta nuqta olingan:

Uchlari ko‘rsatilgan nuqtalarda bo‘lgan nechta uchburchak bor?

\(\frac{{1 + 3 + 5 + \ldots + 43}}{{2 + 4 + 6 + \ldots + 42}}\) ni hisoblang.

\(\;\frac{{10!}}{{7!}} \cdot \left( {\frac{{8!}}{{10!}} + \frac{{3!}}{{5!}}} \right)\) ni hisoblang.

\(n + 7\) soni juft son bo‘lsa, quyidagilardan qaysi biri toq son bo‘ladi?

\(\frac{{{{\left( {2\left| x \right| - 3} \right)}^2} - \left| x \right| - 6}}{{4x + 1}} = 0\) tenglamaning haqiqiy ildizlari yig‘indisini toping.

Sardor \(420\) \({\rm{m}}\) masofani \(7\) \({\rm{daqiqa}}\)da bosib o‘tadi. Sardorning tezligini \(\left( {{\rm{m}}/{\rm{min}}} \right)\) toping.

Aniq integralni hisoblang:
\(\mathop \smallint \nolimits_0^3 \frac{x}{{\sqrt {1 + {x^2}} }}dx + \mathop \smallint \nolimits_0^3 \frac{1}{3}dx\)

\(f\left( x \right) = f\left( 5 \right) \cdot x - 20\) bo‘lsa, \(f\left( 4 \right)\) ning qiymatini toping.

\(\;\left( {e - \pi } \right)x \ge 7\left( {\pi - e} \right)\) tengsizlikni yeching.

Soddalashtiring: \(\frac{{{{\left( {a + 1} \right)}^3} + 1}}{{{a^3} - 1}}\)

\(P\left( x \right) = {\left( {x - 1} \right)^a} \cdot {\left( {x + 2} \right)^b}\) va \(P\left( 2 \right) \cdot P\left( 1 \right) = 64\) bo‘lsa, \(a + b\) ning qiymatini toping.

Quyidagi chizmada berilgan ma’lumotlardan foydalanib, \(x\;\)ni toping.

\(f\left( x \right) = y\) va \({x^2} - 2x = {e^{x - y}}\) bo‘lsa, \(f'\left( 4 \right)\) ning qiymatini toping.

Teng yonli \(ABCD\) trapetsiyaning ichida \(P\) nuqta shunday olinganki, \(PA = 2;\;\;PB = 3;\;\;PC = 4\) va \(PD = 5\) ga teng. Agar \(AD\) katta asos bo’lsa, \(\frac{{BC}}{{AD}}\) ning qiymatini toping.

Quyidagi rasmda qirrasining uzunligi \(6\;{\rm{sm}}\) bo‘lgan muntazam tetraedr tasvirlangan:

Agar \(BD = FE = 4\;{\rm{sm}};{\rm{\;\;}}DC = AF = 2\;{\rm{sm}}\) va \(O\) nuqta \(AC\) qirrada ekanligi ma’lum bo‘lsa, \(DO + OF\) yig‘indining eng kichik qiymatini \(\left( {{\rm{sm}}} \right)\) toping.

\(f\left( x \right) = \left| {\left| {x - 2} \right| - 2} \right|\) funksiya grafigini chizing.

Ishlab chiqarish samaradorligi birinchi yili \(15\% \) ga, ikkinchi yili \(16\% \) ga ortdi. Shu ikki yil ichida samaradorlik necha \(\% \) ga ortgan?

\(32;\;\;18\) va \(24\) sonlarining o‘rta geometrigini toping.

\(4{x^2} + \frac{1}{{{x^2} - 4}} = 16 - \frac{1}{{4 - {x^2}}}\) tenglamani yeching.

\(f\left( {\frac{{3x - 1}}{{x + 2}}} \right) = \frac{{x + 1}}{{x - 1}}\) bo‘lsa, \(f\left( x \right)\) ni toping.

\(n - \;\)hadi \({a_n}\) bo‘lgan arifmetik progressiya uchun \({a_n} = 2 + {a_{n - 1}}\) tenglik o‘rinli bo‘lib, dastlabki o‘nta hadining yig‘indisi \(115\) ga teng bo‘lsa, arifmetik progressiyaning birinchi hadini toping.

\({\left( {\sqrt {6 + \sqrt {35} } } \right)^x} + {\left( {\sqrt {6 - \sqrt {35} } } \right)^x} = 12\) tenglamaning butun ildizlari ko‘paytmasini toping.

\(\cos 3x - \sqrt 3 \sin 3x < 0\) tengsizlikni yeching.

0%