Report a question

You cannot submit an empty report. Please add some details.

matematika fanidan test savollari 5-variant

Abiturentlar uchun matematika fanidan online test savollari.

5-variant

 

Barcha ma'lumotlarni to'g'ri kiriting.

\(5\sqrt 2 \sin \frac{{3\pi }}{8}\cos \frac{{3\pi }}{8}\) ning qiymatini toping.

\(\frac{1}{x} + \frac{1}{y} = \frac{3}{2}\) va \({2^x} = {3^y}\) bo‘lsa, \({8^x}\) ning qiymatini toping.

\(f\left( {{\rm{sin}}x} \right) + f\left( {{\rm{cos}}x} \right) = 3\) bo‘lsa, \(f\left( x \right)\) ni toping.

\(f\left( x \right) = {3^x} \cdot {\rm{tg}}x\) bo’lsa, \(f'\left( 0 \right)\) ning qiymatini toping.

\(f\left( x \right) = {\left( {5{x^3} - 1} \right)^{2017}} \cdot {\left( {2016{x^7} + 1} \right)^5} + {x^{37}} + 14\) ko’phadning ozod hadini toping.

Quyidagi rasmda markazi koordinatalar boshida bo‘lgan aylana tasvirlangan:

\(K\) va \(L\) nuqtalarning absissalari mos ravishda \(\frac{1}{{\sqrt 5 }}\) va \(\frac{3}{{\sqrt {10} }}\) ga teng bo‘lsa, \(\alpha \) ni toping.

\(\overline {ab} + \overline {bc} + \overline {ca} = \overline {abc} \) bo‘lsa, \(a \cdot b \cdot c\) ning qiymatini toping.

Quyidagi rasmda \(f\left( x \right) = {a^x}\) funksiya grafigi tasvirlangan:

Rasmda berilgan ma’lumotlardan foydalanib, \(f\left( 4 \right)\) ning qiymatini toping.

Quyidagi rasmda tasvirlangan doiralardan eng kattasining radiusi \(4\;{\rm{sm}}\) ga teng.

Qolgan har bir doiraning radiusi o‘zidan oldingi doira radiusining \(\frac{3}{4}\) qismini tashkil qiladi. Bunga ko‘ra barcha doiralarning yuzlari yig‘indisini \(\left( {{\rm{s}}{{\rm{m}}^2}} \right)\) toping.

\(64 \cdot {9^x} - 84 \cdot {12^x} + 27 \cdot {16^x} = 0\) tenglamaning haqiqiy ildizlari ko‘paytmasini toping.

Quyidagi rasmda ko‘rsatilgan ma’lumotlardan foydalanib, \(x\) ning qiymatini toping.

\(y = 8x + 19\) funksiyani \(\vec m\left( {6;3} \right)\) vektor bo‘yicha parallel ko‘chirsak, qanday funksiya hosil bo‘ladi?

\(\left( {\begin{array}{*{20}{c}}{EKUB\left( {x;y} \right) = 45}\\{\frac{x}{y} = \frac{{11}}{7}\;\;\;\;}\end{array}} \right.\) tenglamalar sistemasini yeching.

\(ABCD\) parallelogrammning tomonlari \(AB = 25\;{\rm{sm}}\) va \(BC = 34\;{\rm{sm}}\) ga teng. \(DC\) tomonga \(BH\) balandlik tushirilgan hamda \(BC\) tomondan \(M\) va \(AD\) tomondan \(N\) nuqta olingan. \(MN\) kesma \(AD\) tomonga perpendikulyar va \(BH\) ni \(K\) nuqtada kesib o‘tadi. Agar \(MN = \frac{{375}}{{11}}\;{\rm{sm}}\) va \(BK = KH\) bo‘lsa, \(AK\) kesma uzunligini \(\left( {{\rm{sm}}} \right)\) toping.

Slindrning asosi tenglamasi \({x^2} + {\left( {y - 2} \right)^2} = 25\) bo‘lgan aylanadan iborat. Agar silindrning balandligi \(6\;{\rm{sm}}\) ga teng bo‘lsa, uning hajmi necha \(\pi \;{\rm{sm}}\) ga teng bo‘ladi?

Formula \(3\) ta kitob ichidan qidirilyapti. Formulaning birinchi kitobdan topilish ehtimoli \(0,6\) ga, ikkichi kitobdan topilish ehtimoli \(0,7\) ga, uchinchi kitobdan topilish ehtimoli \(0,8\) ga teng bo‘lsa, formulaning faqat \(2\) ta kitobdan topilish ehtimolini toping.

\(2x + 2y\) ko‘phadni ko‘paytuvchilarga ajrating.

\({6^{46}}:23 = A\;\left( q \right)\) bo‘lsa, \(q\) ni toping.

\(\frac{{{7^x} + 7}}{{{7^x} - 7}} + \frac{{{7^x} - 7}}{{{7^x} + 7}} \ge \frac{{4 \cdot {7^x} + 96}}{{{{49}^x} - 49}}\) tengsizlikni yeching.

\(3{a^2} - 4ab + {b^2} = 0\) bo‘lsa, \(a\) ni \(b\) orqali ifodalang.

\(x + \sqrt x = 3\) bo’lsa, \(\frac{{3 + x\sqrt x }}{{\sqrt x }}\) ning qiymatini toping.

\(\frac{1}{{x\left( {x + 1} \right)}} + \frac{1}{{\left( {x + 1} \right)\left( {x + 2} \right)}} + \frac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}} + \frac{1}{{\left( {x + 3} \right)\left( {x + 4} \right)}} + \frac{1}{{\left( {x + 4} \right)\left( {x + 5} \right)}}{\rm{\;}}\)ni soddalashtiring.\({\rm{\;}}\)

Quyidagi rasmda \(y = f\left( x \right)\) funksiya grafigi tasvirlangan:

\(\mathop \smallint \nolimits_{ - 4}^{ - 3} f\left( x \right)dx = 2\;\)
va\(\;{S_3} - {S_2} = 2\) bo‘lsa,
\(\mathop \smallint \nolimits_{ - 2}^{ - 4} f\left( x \right)dx\)
ning qiymatini toping.

\(\sqrt {6x - 57} = 9\) tenglama nechta haqiqiy ildizga ega?

\(\vec a\left( {3;\;7} \right)\) va \(\vec b\left( {8;9} \right)\) bo‘lsa, \(1,2\vec a - 0,7\vec b\) vektorning uzunligini toping.

\({2222^{5555}} + {5555^{2222}}\) sonini \(7\) ga bo‘lgandagi qoldiqni toping.

\(f\left( x \right) = {\rm{lo}}{{\rm{g}}_2}\left( {x + \sqrt {1 + {x^2}} } \right)\) funksiya uchun quyidagilardan qaysi biri to‘g‘ri?

\(x \ne 10\) va \(f\left( x \right) = \sqrt[3]{{x\left( {20 - x} \right)}}\) bo‘lsa, \(\frac{{f\left( {10 - x} \right)}}{{f\left( {10 + x} \right)}}\) ning qiymatini toping.

\(1 \cdot 2 \cdot 3 \cdot \ldots \cdot 54 \cdot 55\) ko‘paytma nechta nol bilan tugaydi?

Quyidagi chizmada olcha daraxtining shoxlari ko‘rsatilgan:

Agar \(AB//ED\) bo‘lsa, \(\angle BCD\) ni toping.

0%