Matematika 1-variant

Matematika fanidan abiturentlar uchun mo'ljallangan testlar jamlanmasi (1-variant)

Test savollar soni: 30 ta

Bajarish uchun vaqt: 60 daqiqa

Barchaga omad yor bo'lsin!

Barcha ma'lumotlarni to'g'ri kiriting.

\({\left( {3\frac{3}{8}} \right)^{ - \frac{2}{3}}} + {27^{\frac{2}{3}}} \cdot {9^{0,5}} \cdot {3^{ - 2}} + {\left( {{{\left( {\frac{7}{9}} \right)}^3}} \right)^0} - {\left( { - \frac{1}{2}} \right)^{ - 2}}\) ni hisoblang.

) To’g’ri burchakli uchburchakning balandligi gipotenuzani 3 va 12 ga teng kesmalarga ajratsa, shu balandlikni toping.

ABC tomoni 16 sm bo’lgan teng tomonli uchburchak. \(\left[ {BH} \right] \bot \left[ {AC} \right],\left[ {HK} \right] \bot \left[ {BC} \right],\) \(\left[ {KT} \right] \bot \left[ {BH} \right]\) bo’lsa, \({S_{\Delta THK}}\)necha sm2?

y=9 – 0,5x funksiyaning qiymatlar sohasini toping. A) \(\left( {9;\infty } \right)\)

Parallelogrammning perimetri 40 sm, uning balandliklari 2:3 kabi nisbatda bo’lsa, parallelogrammning katta tomonini toping.

\(\frac{{\cos 2x}}{{\frac{{\sqrt 2 }}{2} + \sin x}} = 0\) tenglamaning \(\left[ {0;6\pi } \right]\) kesmada nechta ildizi bor?

) \(\sin {18^0}\sin {54^0} = ?\)

) Bir ishxonada ishchi soni yarimga tushirilsa, kunlik ish vaqti 3 barobarga va ish hajmi 6 barobarga oshirilsa, ishni bitirish vaqti necha barobarga oshadi?

\(\left\{ {\begin{array}{*{20}{c}}{3 - 4x > 5}\\{2 + 3(x - 1) \le 4x + 3}\end{array}} \right.\)tengsizliklar sistemasi nechta butun yechimga ega?

Quyida keltirilgan tengliklardan qaysilari ayniyat emas? 1) \((x + a) \cdot (x - b) = {x^2} - (a - b)x - ab;\) 2) \((x - c) \cdot (x - d) = {x^2} + (c - d)x + cd;\) 3) \((x - c) \cdot (x + d) = {x^2} - (c - d)x - cd;\) 4) \(\begin{array}{l}6ab + (2{a^3} + {b^3} - (3a{b^2} - ({a^3} + 2a{b^2} - \\ - {b^3}))) = 3{a^3} - a{b^2} + 6ab;\end{array}\) 5) \(\begin{array}{l}5{a^2} - 3{b^2} - (({a^2} - 2ab - {b^2}) - (5{a^2} - 2ab - \\ - {b^2})) = 9{a^2} + 4ab - 3{b^2}.\end{array}\)

Arifmetik progressiya uchinchi va to’qqizinchi hadlarining yig’indisi 10 ga teng. Shu progressiyaning dastlabki 11 ta hadlari yig’indisini toping.

) Uchburchakning 6 ga teng balandligi uning asosi uzunligini 7:18 kabi nisbatda bo’ladi. Shu balandlikka parallel va uchburchakning yuzini teng ikkiga bo’ladigan to’g’ri chiziq kesmasining uzunligini toping.

\(y = \frac{{{x^2} + ax + b}}{{{x^2}}}\) egri chiziq A(-3;0) nuqtada x o’qiga urinsa, a+b=?

a bilan b ning o’rta arifmetigi va o’rta geometrigi 4 bo’lsa, a-1 bilan b-1 ning o’rta geometrigi topilsin.

Bir bola bilyard sharchalarini 9 tadan to’plarga ajratganda 5 ta, 12 tadan ajratganda 8 ta, 14 tadan ajratganda 10 ta sharcha yetmayapti. Bunga ko’ra bolada kamida nechta sharcha mavjud?

) Teng yonli to’g’ri burchakli uchburchakka ichki chizilgan aylana radiusining uchburchak gipotenuzasiga o’tkazilgan balandlikka bo’lgan nisbatini toping.

) \(\sqrt {a + \sqrt {a + \sqrt {a + ...} } } = 4\) tenglikdan a ni toping.

P(x) ning (x-3)2 ga bo’linmasidan qolgan qoldiq (2x-3) bo’lsa, (x-3) ga bo’linmasidan qolgan qoldiqni toping.

) 40 kishilik sinfda 21 kishi sinfdan sinfga ko’chdi. Qolganlari ona tili va matematikadan kuzga qoldi. Ona tilidan kuzga qolganlar soni matematikadan qolganlarning 2 baravariga teng. Ham ona tilidan, ham matematikadan qolganlar soni 8 kishi bo’lsa, faqat matematikadan qolganlar soni nechta?

To’gri burchakli ABC uchburchakda C burchak to’g’ri burchak bo’lib, AN bissektrisa va AB gipotenuzada D nuqta olingan bo’lib, AD=2 va \({S_{\Delta ANC}}:{S_{\Delta AND}} = 3\) bo’lsa, AC=?

\(a,b \in N\) va \(b = \frac{{a + 3}}{4} + \frac{{a + 3}}{5}\) bo’lsa, a eng kamida nechaga teng?

\(\frac{{({{8,7}^2} - {{11,3}^2})({{13,3}^2} - {{12,3}^2})}}{{({{4,2}^2} - {{5,8}^2})({{2,3}^2} - {{0,3}^2})}}\) ni hisoblang.

\(\frac{{{3^9} \cdot {2^{19}} + 15 \cdot {4^9} \cdot {9^4}}}{{{6^9} \cdot {2^{10}} + {{12}^{10}}}} \cdot {\left( {1\frac{1}{2}} \right)^{ - 1}}\) ni hisoblang.

\(\left| {\frac{1}{{1,5 - \frac{x}{2}}}} \right| > \frac{4}{{15}}\)tengsizlikning barcha butun sonlardagi yechimlari yig’indisini toping.

m ning qanday qiymatlarida \(\left\{ {\begin{array}{*{20}{c}}{2x - y = 3m - 4}\\{x - y = m - 1}\end{array}} \right.\)tenglamalar sistemasining yechimi koordinata tekisligining IV choragiga tegishli bo’ladi.

Ishlab chiqarish samaradorligi birinchi yili 15% ga, ikkinchi yili 16% ga ortdi. Shu ikki yil ichida samaradorlik necha % ga ortgan?

\(\sqrt[n]{{16 \cdot \sqrt[n]{{16 \cdot \sqrt[n]{{16...}}}}}} = m\) bo’lsin, m va n musbat butun sonlar bo’lsa, m-n ni toping.

) Uchburchak ikkita tomonining uzunliklari 6 sm va 3 sm ekanligi ma’lum. Agar berilgan tomonlarga tushirilgan balandliklar yig’indisining yarmi uchinchi balandlikka teng bo’lsa, uchburchakning uchinchi tomoni necha sm.

Agar \(3 \le x \le y \le z \le t \le 27\) bo’lsa, \(\frac{x}{y} + \frac{z}{t}\) ifodaning eng kichik qiymatini toping.

\({\log _2}25\)ning butun qismini toping.

0%