123456789101112131415161718192021222324252627282930 Matematika 1-variant Matematika fanidan abiturentlar uchun mo'ljallangan testlar jamlanmasi (1-variant) Test savollar soni: 30 ta Bajarish uchun vaqt: 60 daqiqa Barchaga omad yor bo'lsin! Barcha ma'lumotlarni to'g'ri kiriting. ) Uchburchak ikkita tomonining uzunliklari 6 sm va 3 sm ekanligi ma’lum. Agar berilgan tomonlarga tushirilgan balandliklar yig’indisining yarmi uchinchi balandlikka teng bo’lsa, uchburchakning uchinchi tomoni necha sm. 6 7 4 1 Quyida keltirilgan tengliklardan qaysilari ayniyat emas? 1) \((x + a) \cdot (x - b) = {x^2} - (a - b)x - ab;\) 2) \((x - c) \cdot (x - d) = {x^2} + (c - d)x + cd;\) 3) \((x - c) \cdot (x + d) = {x^2} - (c - d)x - cd;\) 4) \(\begin{array}{l}6ab + (2{a^3} + {b^3} - (3a{b^2} - ({a^3} + 2a{b^2} - \\ - {b^3}))) = 3{a^3} - a{b^2} + 6ab;\end{array}\) 5) \(\begin{array}{l}5{a^2} - 3{b^2} - (({a^2} - 2ab - {b^2}) - (5{a^2} - 2ab - \\ - {b^2})) = 9{a^2} + 4ab - 3{b^2}.\end{array}\) 2;3;5 1;2;5 1;2;4 1;3;4 \(\sqrt[n]{{16 \cdot \sqrt[n]{{16 \cdot \sqrt[n]{{16...}}}}}} = m\) bo’lsin, m va n musbat butun sonlar bo’lsa, m-n ni toping. -3, 1 va 14 -3 va 1 -3, 1 va 15 1 va 14 \(\frac{{({{8,7}^2} - {{11,3}^2})({{13,3}^2} - {{12,3}^2})}}{{({{4,2}^2} - {{5,8}^2})({{2,3}^2} - {{0,3}^2})}}\) ni hisoblang. 0,32 32 3,2 16 \(\left| {\frac{1}{{1,5 - \frac{x}{2}}}} \right| > \frac{4}{{15}}\)tengsizlikning barcha butun sonlardagi yechimlari yig’indisini toping. 42 43 32 24 Agar \(3 \le x \le y \le z \le t \le 27\) bo’lsa, \(\frac{x}{y} + \frac{z}{t}\) ifodaning eng kichik qiymatini toping. \(\frac{2}{3}\) \( - \frac{2}{3}\) \( - \frac{5}{3}\) \(\frac{3}{2}\) ) Teng yonli to’g’ri burchakli uchburchakka ichki chizilgan aylana radiusining uchburchak gipotenuzasiga o’tkazilgan balandlikka bo’lgan nisbatini toping. \(\sqrt 2 - 1\) \(\sqrt 2 + 1\) \(1 - \sqrt 2 \) \(\sqrt 5 - 2\) Arifmetik progressiya uchinchi va to’qqizinchi hadlarining yig’indisi 10 ga teng. Shu progressiyaning dastlabki 11 ta hadlari yig’indisini toping. 44 55 22 60 ) \(\sin {18^0}\sin {54^0} = ?\) 0,5 0,35 0,75 0,25 To’gri burchakli ABC uchburchakda C burchak to’g’ri burchak bo’lib, AN bissektrisa va AB gipotenuzada D nuqta olingan bo’lib, AD=2 va \({S_{\Delta ANC}}:{S_{\Delta AND}} = 3\) bo’lsa, AC=? 4 3 6 5 \(\begin{array}{l}\sin {10^0}\sin {20^0}\sin {30^0}\sin {40^0}\sin {50^0} \cdot \\ \cdot \sin {60^0}\sin {70^0}\sin {80^0} = ?.\end{array}\) \(\frac{3}{{256}}\) \(\frac{1}{{256}}\) \(\frac{3}{{265}}\) \(\frac{1}{{265}}\) \({\left( {3\frac{3}{8}} \right)^{ - \frac{2}{3}}} + {27^{\frac{2}{3}}} \cdot {9^{0,5}} \cdot {3^{ - 2}} + {\left( {{{\left( {\frac{7}{9}} \right)}^3}} \right)^0} - {\left( { - \frac{1}{2}} \right)^{ - 2}}\) ni hisoblang. 1 \(\frac{4}{9}\) \(\frac{8}{9}\) 0 ) Uchburchakning 6 ga teng balandligi uning asosi uzunligini 7:18 kabi nisbatda bo’ladi. Shu balandlikka parallel va uchburchakning yuzini teng ikkiga bo’ladigan to’g’ri chiziq kesmasining uzunligini toping. 4 5,5 3,5 5 \(\frac{{{3^9} \cdot {2^{19}} + 15 \cdot {4^9} \cdot {9^4}}}{{{6^9} \cdot {2^{10}} + {{12}^{10}}}} \cdot {\left( {1\frac{1}{2}} \right)^{ - 1}}\) ni hisoblang. \(\frac{2}{3}\) \(\frac{1}{3}\) 1 \(\frac{1}{2}\) Ishlab chiqarish samaradorligi birinchi yili 15% ga, ikkinchi yili 16% ga ortdi. Shu ikki yil ichida samaradorlik necha % ga ortgan? 32,4 34,4 31 33,4 \(\frac{{\cos 2x}}{{\frac{{\sqrt 2 }}{2} + \sin x}} = 0\) tenglamaning \(\left[ {0;6\pi } \right]\) kesmada nechta ildizi bor? 8 6 2 4 Parallelogrammning perimetri 40 sm, uning balandliklari 2:3 kabi nisbatda bo’lsa, parallelogrammning katta tomonini toping. 15 25 12 18 m ning qanday qiymatlarida \(\left\{ {\begin{array}{*{20}{c}}{2x - y = 3m - 4}\\{x - y = m - 1}\end{array}} \right.\)tenglamalar sistemasining yechimi koordinata tekisligining IV choragiga tegishli bo’ladi. \(\emptyset \) \(\left( {\frac{3}{2};2} \right)\) \(\left( { - \infty ;\frac{5}{3}} \right)\) \(\left( {2;\infty } \right)\) \(y = \frac{{{x^2} + ax + b}}{{{x^2}}}\) egri chiziq A(-3;0) nuqtada x o’qiga urinsa, a+b=? -6 -12 6 15 \(a,b \in N\) va \(b = \frac{{a + 3}}{4} + \frac{{a + 3}}{5}\) bo’lsa, a eng kamida nechaga teng? 3 0 17 2 P(x) ning (x-3)2 ga bo’linmasidan qolgan qoldiq (2x-3) bo’lsa, (x-3) ga bo’linmasidan qolgan qoldiqni toping. 3 4 1 2 \({\log _2}25\)ning butun qismini toping. 5 4 2 3 a bilan b ning o’rta arifmetigi va o’rta geometrigi 4 bo’lsa, a-1 bilan b-1 ning o’rta geometrigi topilsin. 5 2 3 4 y=9 – 0,5x funksiyaning qiymatlar sohasini toping. A) \(\left( {9;\infty } \right)\) \(\left( {0;9} \right)\) \(\left( { - \infty ;\infty } \right)\) \(\left( {0;\infty } \right)\) \(\left( { - \infty ;9} \right)\) ABC tomoni 16 sm bo’lgan teng tomonli uchburchak. \(\left[ {BH} \right] \bot \left[ {AC} \right],\left[ {HK} \right] \bot \left[ {BC} \right],\) \(\left[ {KT} \right] \bot \left[ {BH} \right]\) bo’lsa, \({S_{\Delta THK}}\)necha sm2? \(6\sqrt 3 \) \(8\sqrt 3 \) \(4\sqrt 3 \) \(16\sqrt 3 \) ) To’g’ri burchakli uchburchakning balandligi gipotenuzani 3 va 12 ga teng kesmalarga ajratsa, shu balandlikni toping. \(6\sqrt 3 \) 6 12 4 ) \(\sqrt {a + \sqrt {a + \sqrt {a + ...} } } = 4\) tenglikdan a ni toping. 6 4 12 32 \(\arccos \frac{{36}}{{85}} - \arccos \frac{{15}}{{17}} = ?\) \(\frac{\pi }{2} + \arcsin \frac{5}{4}\) \(\frac{\pi }{{12}} - \arcsin \frac{4}{5}\) \(\frac{{2\pi }}{2} - \arcsin \frac{4}{5}\) \(\frac{\pi }{2} - \arcsin \frac{4}{5}\) Bir bola bilyard sharchalarini 9 tadan to’plarga ajratganda 5 ta, 12 tadan ajratganda 8 ta, 14 tadan ajratganda 10 ta sharcha yetmayapti. Bunga ko’ra bolada kamida nechta sharcha mavjud? 1003 509 504 256 \({\log _{\sqrt 5 }}\sqrt {5 \cdot \sqrt {5 \cdot \sqrt {5 \cdot ...} } } = ?\) 5 2 1/2 1 Facebook Twitter VKontakte 0% Перезапустить тест