123456789101112131415161718192021222324252627282930 Matematika 1-variant Matematika fanidan abiturentlar uchun mo'ljallangan testlar jamlanmasi (1-variant) Test savollar soni: 30 ta Bajarish uchun vaqt: 60 daqiqa Barchaga omad yor bo'lsin! Barcha ma'lumotlarni to'g'ri kiriting. y=9 – 0,5x funksiyaning qiymatlar sohasini toping. A) \(\left( {9;\infty } \right)\) \(\left( {0;9} \right)\) \(\left( { - \infty ;9} \right)\) \(\left( { - \infty ;\infty } \right)\) \(\left( {0;\infty } \right)\) \({\left( {3\frac{3}{8}} \right)^{ - \frac{2}{3}}} + {27^{\frac{2}{3}}} \cdot {9^{0,5}} \cdot {3^{ - 2}} + {\left( {{{\left( {\frac{7}{9}} \right)}^3}} \right)^0} - {\left( { - \frac{1}{2}} \right)^{ - 2}}\) ni hisoblang. \(\frac{4}{9}\) 0 1 \(\frac{8}{9}\) Quyida keltirilgan tengliklardan qaysilari ayniyat emas? 1) \((x + a) \cdot (x - b) = {x^2} - (a - b)x - ab;\) 2) \((x - c) \cdot (x - d) = {x^2} + (c - d)x + cd;\) 3) \((x - c) \cdot (x + d) = {x^2} - (c - d)x - cd;\) 4) \(\begin{array}{l}6ab + (2{a^3} + {b^3} - (3a{b^2} - ({a^3} + 2a{b^2} - \\ - {b^3}))) = 3{a^3} - a{b^2} + 6ab;\end{array}\) 5) \(\begin{array}{l}5{a^2} - 3{b^2} - (({a^2} - 2ab - {b^2}) - (5{a^2} - 2ab - \\ - {b^2})) = 9{a^2} + 4ab - 3{b^2}.\end{array}\) 2;3;5 1;2;4 1;2;5 1;3;4 ) 40 kishilik sinfda 21 kishi sinfdan sinfga ko’chdi. Qolganlari ona tili va matematikadan kuzga qoldi. Ona tilidan kuzga qolganlar soni matematikadan qolganlarning 2 baravariga teng. Ham ona tilidan, ham matematikadan qolganlar soni 8 kishi bo’lsa, faqat matematikadan qolganlar soni nechta? 8 1 3 9 ) Teng yonli to’g’ri burchakli uchburchakka ichki chizilgan aylana radiusining uchburchak gipotenuzasiga o’tkazilgan balandlikka bo’lgan nisbatini toping. \(\sqrt 2 - 1\) \(\sqrt 5 - 2\) \(\sqrt 2 + 1\) \(1 - \sqrt 2 \) ) \(\sqrt {a + \sqrt {a + \sqrt {a + ...} } } = 4\) tenglikdan a ni toping. 12 6 4 32 Parallelogrammning perimetri 40 sm, uning balandliklari 2:3 kabi nisbatda bo’lsa, parallelogrammning katta tomonini toping. 25 12 18 15 ) Uchburchakning 6 ga teng balandligi uning asosi uzunligini 7:18 kabi nisbatda bo’ladi. Shu balandlikka parallel va uchburchakning yuzini teng ikkiga bo’ladigan to’g’ri chiziq kesmasining uzunligini toping. 3,5 5,5 5 4 \(\frac{{t - 6}}{{m - 10}} = \frac{m}{t}\) tenglama m ning nechta natural qiymatida ildizga ega emas? 5 8 7 28 \(\frac{{({{8,7}^2} - {{11,3}^2})({{13,3}^2} - {{12,3}^2})}}{{({{4,2}^2} - {{5,8}^2})({{2,3}^2} - {{0,3}^2})}}\) ni hisoblang. 0,32 32 3,2 16 To’gri burchakli ABC uchburchakda C burchak to’g’ri burchak bo’lib, AN bissektrisa va AB gipotenuzada D nuqta olingan bo’lib, AD=2 va \({S_{\Delta ANC}}:{S_{\Delta AND}} = 3\) bo’lsa, AC=? 5 3 6 4 Arifmetik progressiya uchinchi va to’qqizinchi hadlarining yig’indisi 10 ga teng. Shu progressiyaning dastlabki 11 ta hadlari yig’indisini toping. 44 60 22 55 ) Uchburchak ikkita tomonining uzunliklari 6 sm va 3 sm ekanligi ma’lum. Agar berilgan tomonlarga tushirilgan balandliklar yig’indisining yarmi uchinchi balandlikka teng bo’lsa, uchburchakning uchinchi tomoni necha sm. 6 7 4 1 ) \(\sin {18^0}\sin {54^0} = ?\) 0,5 0,35 0,25 0,75 P(x) ning (x-3)2 ga bo’linmasidan qolgan qoldiq (2x-3) bo’lsa, (x-3) ga bo’linmasidan qolgan qoldiqni toping. 3 4 2 1 \(y = \frac{{{x^2} + ax + b}}{{{x^2}}}\) egri chiziq A(-3;0) nuqtada x o’qiga urinsa, a+b=? 15 -12 -6 6 \(\frac{{3\sin \alpha + 2}}{{5 + \cos \beta }} + \frac{3}{{t{g^2}\gamma + ct{g^2}\gamma }}\) ifodaning eng katta qiymatini toping. 2,75 3 2,76 3,75 \(\arccos \frac{{36}}{{85}} - \arccos \frac{{15}}{{17}} = ?\) \(\frac{\pi }{2} - \arcsin \frac{4}{5}\) \(\frac{\pi }{2} + \arcsin \frac{5}{4}\) \(\frac{{2\pi }}{2} - \arcsin \frac{4}{5}\) \(\frac{\pi }{{12}} - \arcsin \frac{4}{5}\) Bir bola bilyard sharchalarini 9 tadan to’plarga ajratganda 5 ta, 12 tadan ajratganda 8 ta, 14 tadan ajratganda 10 ta sharcha yetmayapti. Bunga ko’ra bolada kamida nechta sharcha mavjud? 256 509 504 1003 \(\frac{{{3^9} \cdot {2^{19}} + 15 \cdot {4^9} \cdot {9^4}}}{{{6^9} \cdot {2^{10}} + {{12}^{10}}}} \cdot {\left( {1\frac{1}{2}} \right)^{ - 1}}\) ni hisoblang. \(\frac{2}{3}\) \(\frac{1}{2}\) 1 \(\frac{1}{3}\) ) To’g’ri burchakli uchburchakning balandligi gipotenuzani 3 va 12 ga teng kesmalarga ajratsa, shu balandlikni toping. 12 4 6 \(6\sqrt 3 \) a bilan b ning o’rta arifmetigi va o’rta geometrigi 4 bo’lsa, a-1 bilan b-1 ning o’rta geometrigi topilsin. 4 5 2 3 Ishlab chiqarish samaradorligi birinchi yili 15% ga, ikkinchi yili 16% ga ortdi. Shu ikki yil ichida samaradorlik necha % ga ortgan? 32,4 33,4 31 34,4 \({\log _2}25\)ning butun qismini toping. 3 4 5 2 \(\begin{array}{l}\sin {10^0}\sin {20^0}\sin {30^0}\sin {40^0}\sin {50^0} \cdot \\ \cdot \sin {60^0}\sin {70^0}\sin {80^0} = ?.\end{array}\) \(\frac{3}{{256}}\) \(\frac{1}{{265}}\) \(\frac{1}{{256}}\) \(\frac{3}{{265}}\) \(\sqrt[n]{{16 \cdot \sqrt[n]{{16 \cdot \sqrt[n]{{16...}}}}}} = m\) bo’lsin, m va n musbat butun sonlar bo’lsa, m-n ni toping. 1 va 14 -3 va 1 -3, 1 va 14 -3, 1 va 15 \(\left\{ {\begin{array}{*{20}{c}}{3 - 4x > 5}\\{2 + 3(x - 1) \le 4x + 3}\end{array}} \right.\)tengsizliklar sistemasi nechta butun yechimga ega? 3 6 1 4 \(\frac{{\cos 2x}}{{\frac{{\sqrt 2 }}{2} + \sin x}} = 0\) tenglamaning \(\left[ {0;6\pi } \right]\) kesmada nechta ildizi bor? 6 4 2 8 \(a,b \in N\) va \(b = \frac{{a + 3}}{4} + \frac{{a + 3}}{5}\) bo’lsa, a eng kamida nechaga teng? 17 0 3 2 \(\left| {\frac{1}{{1,5 - \frac{x}{2}}}} \right| > \frac{4}{{15}}\)tengsizlikning barcha butun sonlardagi yechimlari yig’indisini toping. 43 32 24 42 Facebook Twitter VKontakte 0% Перезапустить тест